【閱讀理解】問(wèn)題:已知方程x2+2x-3=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x,所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+2×
y
2
-3=0.
化簡(jiǎn)得y2+4y-12=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
【解決問(wèn)題】請(qǐng)用閱讀材料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+2x-3=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為
y2-2y-3=0
y2-2y-3=0

(2)已知關(guān)于x的方程x2+nx+m=0有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是已知方程根的倒數(shù).
分析:(1)根據(jù)題意,設(shè)所求方程的根是y,則y=-x,所以x=-y,然后把x=-y代入原方程,化簡(jiǎn)可求;
(2)根據(jù)題意,設(shè)所求方程的根是y,則y=
1
x
,所以x=
1
y
,然后把x=
1
y
代入原方程,化簡(jiǎn)可求.
解答:解:(1)設(shè)所求方程的根是y,則y=-x,所以x=-y,
把x=-y代入x2+2x-3=0,得y2-2y-3=0,
故答案是y2-2y-3=0;

(2)設(shè)所求方程的根是y,則y=
1
x
,所以x=
1
y
,
把x=
1
y
代入方程x2+nx+m=0,得
1
y2
+
n
y
+m=0,
化簡(jiǎn),得my2+ny+1=0.
點(diǎn)評(píng):本題考查了一元二次方程的解,解題的關(guān)鍵是注意掌握掌握換根法的使用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

【閱讀理解】:若一條直線l把一個(gè)圖形分成面積相等的兩個(gè)圖形,則稱這樣的直線l叫做這個(gè)圖形的等積直線.如圖①,直線l經(jīng)過(guò)三角形ABC的頂點(diǎn)A和邊BC的中點(diǎn)N,易知直線l將△ABC分成兩個(gè)面積相等的圖形,則稱直線l為△ABC的等積直線.

根據(jù)上述內(nèi)容解決以下問(wèn)題:
(1)如圖②,在矩形ABCD中,直線l經(jīng)過(guò)AD、BC邊的中點(diǎn)M、N,請(qǐng)你判斷直線l是否為該矩形的等積直線.
 (填“是”或“否”)并在圖②中再畫(huà)出一條該矩形的等積直線;(不必寫(xiě)作法,保留作圖痕跡)
(2)如圖③,在梯形ABCD中,直線l經(jīng)過(guò)AD、BC邊的中點(diǎn)M、N,請(qǐng)你判斷直線l是否為該梯形的等積直線.
;(填“是”或“否”)
(3)在圖③中,過(guò)MN的中點(diǎn)O任做一條直線PQ分別交AD,BC于點(diǎn)P,Q(如圖④),猜想PQ是否為該梯形的等積直線,若“是”請(qǐng)證明,若“不是”請(qǐng)說(shuō)明理由;
【探索應(yīng)用】:
李大爺家有一塊五邊形的土地如圖⑤,已知∠A、∠B、∠C都是直角,AB∥CD,BC∥AE,現(xiàn)決定畫(huà)一條線把五邊形土地分為兩
塊,其中一塊地用來(lái)改種核桃樹(shù),要求兩塊地面積相同,請(qǐng)你幫李大爺畫(huà)出這條線,并判斷這樣的直線有多少條(保留作圖痕跡,不必說(shuō)明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

【閱讀理解】
課外興趣小組活動(dòng)時(shí),老師提出了如下問(wèn)題:

如圖1,△ABC中,若AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過(guò)合作交流,得到了如下的解決方法:延長(zhǎng)AD到點(diǎn)E,使DE=AD,請(qǐng)根據(jù)小明的方法思考:
(1)由已知和作圖能得到△ADC≌△EDB的理由是
B
B

A.SSS      B.SAS      C.AAS        D.HL
(2)求得AD的取值范圍是
C
C

A.6<AD<8   B.6≤AD≤8  C.1<AD<7  D.1≤AD≤7
【感悟】
解題時(shí),條件中若出現(xiàn)“中點(diǎn)”“中線”字樣,可以考慮延長(zhǎng)中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集合到同一個(gè)三角形中.
【問(wèn)題解決】
(3)如圖2,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF. 求證:AC=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

【閱讀理解】問(wèn)題:已知方程x2+2x-3=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x,所以x=數(shù)學(xué)公式
把x=數(shù)學(xué)公式代入已知方程,得(數(shù)學(xué)公式2+2×數(shù)學(xué)公式-3=0.
化簡(jiǎn)得y2+4y-12=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
【解決問(wèn)題】請(qǐng)用閱讀材料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+2x-3=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為_(kāi)_____;
(2)已知關(guān)于x的方程x2+nx+m=0有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是已知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

【閱讀理解】問(wèn)題:已知方程x2+2x-3=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
設(shè)所求方程的根為y,則y=2x,所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+2×
y
2
-3=0.
化簡(jiǎn)得y2+4y-12=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
【解決問(wèn)題】請(qǐng)用閱讀材料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+2x-3=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為_(kāi)_____;
(2)已知關(guān)于x的方程x2+nx+m=0有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是已知方程根的倒數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案