(2012•濟寧)如圖,將矩形ABCD的四個角向內(nèi)折起,恰好拼成一個無縫隙無重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長是( 。
分析:先求出△EFH是直角三角形,再根據(jù)勾股定理求出FH=20,再利用全等三角形的性質(zhì)解答即可.
解答:解:設(shè)斜線上兩個點分別為P、Q,
∵P點是B點對折過去的,
∴∠EPH為直角,△AEH≌△PEH,
∴∠HEA=∠PEH,
同理∠PEF=∠BEF,
∴∠PEH+∠PEF=90°,
∴四邊形EFGH是矩形,
∴△DHG≌△BFE,HEF是直角三角形,
∴BF=DH=PF,
∵AH=HP,
∴AD=HF,
∵EH=12cm,EF=16cm,
∴FH=
EH2+EF2
=
122+162
=20cm,
∴FH=AD=20cm.
故選C.
點評:本題考查的是翻折變換及勾股定理、全等三角形的判定與性質(zhì),解答此題的關(guān)鍵是作出輔助線,構(gòu)造出全等三角形,再根據(jù)直角三角形及全等三角形的性質(zhì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟寧)如圖,在平面直角坐標(biāo)系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋轉(zhuǎn)得到的.
(1)請寫出旋轉(zhuǎn)中心的坐標(biāo)是
O(0,0)
O(0,0)
,旋轉(zhuǎn)角是
90
90
度;
(2)以(1)中的旋轉(zhuǎn)中心為中心,分別畫出△A1AC1順時針旋轉(zhuǎn)90°、180°的三角形;
(3)設(shè)Rt△ABC兩直角邊BC=a、AC=b、斜邊AB=c,利用變換前后所形成的圖案證明勾股定理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟寧)如圖,是由若干個完全相同的小正方體組成的一個幾何體的主視圖和左視圖,則組成這個幾何體的小正方體的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟寧)如圖,在平面直角坐標(biāo)系中,點P坐標(biāo)為(-2,3),以點O為圓心,以O(shè)P的長為半徑畫弧,交x軸的負半軸于點A,則點A的橫坐標(biāo)介于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟寧)如圖,拋物線y=ax2+bx-4與x軸交于A(4,0)、B(-2,0)兩點,與y軸交于點C,點P是線段AB上一動點(端點除外),過點P作PD∥AC,交BC于點D,連接CP.
(1)求該拋物線的解析式;
(2)當(dāng)動點P運動到何處時,BP2=BD•BC;
(3)當(dāng)△PCD的面積最大時,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案