試題分析:(1)當(dāng)PQ∥BC時,我們可得出三角形APQ和三角形ABC相似,那么可得出關(guān)于AP,AB,AQ,AC的比例關(guān)系,我們觀察這四條線段,已知的有AC,根據(jù)P,Q的速度,可以用時間t表示出AQ,BP的長,而AB可以用勾股定理求出,這樣也就可以表示出AP,那么將這些數(shù)值代入比例關(guān)系式中,即可得出t的值.
(2)求三角形APQ的面積就要先確定底邊和高的值,底邊AQ可以根據(jù)Q的速度和時間t表示出來.關(guān)鍵是高,可以用AP和∠A的正弦值來求.AP的長可以用AB-BP求得,而sinA就是BC:AB的值,因此表示出AQ和AQ邊上的高后,就可以得出y與t的函數(shù)關(guān)系式.
(3)如果將三角形ABC的周長和面積平分,那么AP+AQ=BP+BC+CQ,那么可以用t表示出CQ,AQ,AP,BP的長,那么可以求出此時t的值,我們可將t的值代入(2)的面積與t的關(guān)系式中,求出此時面積是多少,然后看看面積是否是三角形ABC面積的一半,從而判斷出是否存在這一時刻.
(4)過點P作PM⊥AC于M,PN⊥BC于N,那么PNCM就是個矩形,解題思路:通過三角形BPN和三角形ABC相似,得出關(guān)于BP,PN,AB,AC的比例關(guān)系,即可用t表示出PN的長,也就表示出了MC的長,要想使四邊形PQP'C是菱形,PQ=PC,根據(jù)等腰三角形三線合一的特點,QM=MC,這樣有用t表示出的AQ,QM,MC三條線段和AC的長,就可以根據(jù)AC=AQ+QM+MC來求出t的值.求出了t就可以得出QM,CM和PM的長,也就能求出菱形的邊長了.
試題解析:(1) 連接PQ,
若
時,PQ//BC,即
,
∴ t=
(2) 過P作PD⊥AC于點D,則有
,
即
,
∴ PD=
∴ y=
=
(0<t<2)
(3) 若平分周長則有:
AP+AQ=
(AB+AC+BC),
即:5-t+2t=6,
∴ t=1
當(dāng)t=1時,y=3.4;而三角形ABC的面積為6,顯然不存在。
過P作PD⊥AC于點D,若QD=CD,則PQ=PC,四邊形PQP'C就為菱形。
同(2)方法可求AD=
,所以:
-2t=4-
;
解之得:t=
。
即t=
時,四邊形PQP'C為菱形。
考點: 相似形綜合題.