如圖,點P在射線OM上,PC⊥OA,PD⊥OB,垂足分別為C,D且PC=PD,求證:OC﹦OD.
分析:利用“HL”證明Rt△POC和Rt△POD全等,根據(jù)全等三角形對應(yīng)邊相等證明即可.
解答:證明:∵PC⊥OA,PD⊥OB,
∴∠PCO=∠PDO=90°,
在Rt△POC和Rt△POD中,
PO=PO
PC=PD

∴Rt△POC≌Rt△POD(HL),
∴OC=OD.
點評:本題考查了全等三角形的判定與性質(zhì),熟練掌握直角三角形的判定方法并利用好公共邊PO是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•五通橋區(qū)模擬)如圖,已知∠MON=30°,AB⊥ON,垂足為點A,點B在射線OM上,AB=1cm,在射線ON上截取OA1=OB,過A1作A1B1∥AB,A1B1交射線OM于點B1,再在射線ON上截取OA2=OB1,過點A2作A2B2∥AB,A2B2交射線OM于點B2;…依次進(jìn)行下去,則A1B1線段的長度為
2
3
3
2
3
3
,A10B10線段的長度為
210
3
3
210
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖①,∠MON=90°,點A是射線ON上的一個定點,OA=4,點B是射線OM上的一個動點,分別以O(shè)A、AB為邊在∠MON的內(nèi)部作等邊三角形AOP和ABQ,連接PQ
(1)求∠APQ的度數(shù).
(2)當(dāng)點B在射線OM上移動時,四邊形AOPQ的形狀也隨之發(fā)生變化.它能變化成一個平行四邊形嗎?若能,確定點B的位置;若不能,說明理由.
(3)若直線AP與BQ相交于點C,設(shè)△ABQ的面積為S1,四邊形AOBP面積為S2,當(dāng)S1=2S2時,判定BQ與OB的位置關(guān)系.(可利用備用圖)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個三角板的直角頂點與點C重合,它的兩條直角邊也分別與x軸正半軸、y軸正半軸相交于E點、D點.當(dāng)三角板繞點C旋轉(zhuǎn)到與x軸、y軸垂直時,如圖1,已知射線OM為第一象限的角平分線,C點的坐標(biāo)為(2,2)
(1)四邊形ODCE的面積是
4
4
;點D的坐標(biāo)為
(0,2)
(0,2)
;點E的坐標(biāo)為
(2,0)
(2,0)

(2)將三角板繞點C旋轉(zhuǎn)到與x軸、y軸不垂直時,如圖2,在旋轉(zhuǎn)過程中,四邊形ODCE的面積始終保持不變,其值為定值.請你說明其中的道理.
(3)經(jīng)過D、O、E三點畫⊙O1,如圖3,設(shè)△DOE的內(nèi)切圓的直徑為d,請證明:不論⊙O1的大小、位置如何變化,d+DE的值不變.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

作業(yè)寶如圖,點P在射線OM上,PC⊥OA,PD⊥OB,垂足分別為C,D且PC=PD,求證:OC﹦OD.

查看答案和解析>>

同步練習(xí)冊答案