【題目】求下列圖形中陰影部分的面積:

(1) 陰影部分是正方形; (2) 陰影部分是長方形; (3) 陰影部分是半圓.

【答案】(1) 25 cm2;(2) 51 cm2;(3) 8π cm2.

【解析】

1、仔細審題,結合已知想一想正方形,長方形,圓的面積計算公式;2、結合已知根據直角三角形,勾股定理即可得到三角形的另一邊的長度;3、此時結合圖形,根據正方形,長方形,圓的面積計算公式即可解答.

(1)正方形的邊長==5cm,

所以陰影部分正方形的面積=5×5=25cm2.

(2)長方形的長==17cm,

所以長方形的面積=17×3=51cm2.

(3)圓的直徑==8,

所以半圓的面積=×π×42=8π(cm2).

故答案為:(1) 25 cm2;(2) 51 cm2;(3) 8π cm2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在求1+3+32+33+34+35+36+37+38的值時,張紅發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的3倍,于是她假設:S=1+3+32+33+34+35+36+37+38①,然后在①式的兩邊都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②一①得:3S﹣S=39﹣1,即2S=39﹣1,∴S= .得出答案后,愛動腦筋的張紅想:如果把“3”換成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正確答案是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點,且OC∥BD,AD分別與BC,OC相交于點E,F(xiàn),則下列結論:
①AD⊥BD;②∠AOC=∠AEC;③BC平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )

A.②④⑤⑥
B.①③⑤⑥
C.②③④⑥
D.①③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC沿直線AD折疊,B與點E重合,連接BEADO.∠ABC=90°,AB=6,BC=8,AC=10,SACD=15.有下列結論:①SCDE=5;②CD=5③OB=OE;④SABD:SACD=3:4,則以上結論正確的是(

A. ①②B. ②③C. ②③④D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】道路交通管理條例規(guī)定:小汽車在城街上行駛速度不得超過70千米/小時,如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路面對車速檢測儀A正前方30B處,過了2秒后,測得小汽車C與車速檢測儀A間距離為50米,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學校組積的科學家素養(yǎng)競賽中,每班參加比賽的人數(shù)相同,成績分為A、BC、D四個等級,其中相應等級的得分依次記為90分、80分、70 分、60 ,學校將八年級(1)班和(2) 班的成績整理并繪制成如下的統(tǒng)計圖:

請你根據以上提供的信息解答下列問題:

(1) 此次競賽中班成績在70分以上(包括70) 的人數(shù)有多少人?

(2) 補全下表中空缺的三個統(tǒng)計量:

平均數(shù)/

中位數(shù)/

眾數(shù)/

77.6

80

_____________

_____________

______________

90

(3) 請根據上述圖表對這次競賽成績進行分析,寫出兩個結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角△ABC,AD平分∠BACBC于點D,點MN分別是ADAB上的動點,當SABC=6,AC=4,BM+MN的最小值等于_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠ABC=90°,D是直線AB上的點,AD=BC.

(1)如圖1,過點A作AF⊥AB,并截取AF=BD,連接DC、DF、CF,判斷△CDF的形狀并證明;
(2)如圖2,E是直線BC上一點,且CE=BD,直線AE、CD相交于點P,∠APD的度數(shù)是一個固定的值嗎?若是,請求出它的度數(shù);若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一個有45°角的三角板的直角頂點放在一張寬為3cm的紙帶邊沿上,另一個頂

點在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),

則三角板的最大邊的長為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案