如圖,下列條件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定ABCD的條件為  ……………………………………………………………… (      )

A.①②③④         B.①②④         C.①③④        D.①②③

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


計(jì)算|﹣|+(1﹣(1+0+2•tan60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


(1)如圖,△ABC中,∠ABC的角平分線與∠ACB的外角ACD的平分線交于A1. 當(dāng)∠A為80°時(shí),求∠A1的度數(shù)

(2)在上一題中,若∠A1BC的角平分線與∠A1CD的角平分線交于A2,∠A2BCA2CD的平分線交于A3,如此繼續(xù)下去可得A4、…、An,則∠A6=               .

(3)如圖,四邊形ABCD中,∠F為∠ABC的角平分線及外角∠DCE的平分線所在的直線構(gòu)成的角,若∠A+∠D=230度,則∠F=             

(4)如圖,△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于A1EBA延長(zhǎng)線上一動(dòng)點(diǎn),連EC,∠AEC與∠ACE的角平分線交于Q,當(dāng)E滑動(dòng)時(shí)有下面兩個(gè)結(jié)論:①∠Q+∠A1的值為定值;②∠Q —∠A1的值為定值.其中有且只有一個(gè)是正確的,請(qǐng)寫(xiě)出正確的結(jié)論           (填編號(hào)),并寫(xiě)出其值                  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知是二元一次方程的解,則的值是________.  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,三角形ABC內(nèi)的線段BD、CE相交于點(diǎn)O,已知OB=OD,OC=2OE.若ΔBOC的面積=2,則四邊形AEOD的面積等于……………………………………(       )

A.4        B.5          C.6            D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖所示,某古代文物被探明埋于地下的A處,由于點(diǎn)A上方有一些管道,考古人員不能垂直向下挖掘,他們被允許從B處或C處挖掘,從B處挖掘時(shí),最短路線BA與地面所成的銳角是56°,從C處挖掘時(shí),最短路線CA與地面所成的銳角是30°,且BC=20m,若考古人員最終從B處挖掘,求挖掘的最短距離.(參考數(shù)據(jù):sin56°=0.83,tan56°≈1.48,≈1.73,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖所示,格點(diǎn)△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)得到△EBD,圖中每個(gè)小正方形的邊長(zhǎng)是1,則圖中陰影部分的面積為      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,點(diǎn)A,B,C,D在同一條直線上,點(diǎn)E,F(xiàn)分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.

(1)求證:四邊形BFCE是平行四邊形;

(2)若AD=10,DC=3,∠EBD=60°,則BE=       時(shí),四邊形BFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


某玩具店進(jìn)了一箱黑白兩種顏色的塑料球3000個(gè)(除顏色外都相同),為了估計(jì)兩種顏色的球各有多少個(gè),將箱子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回箱子里,多次重復(fù)上述過(guò)程后,發(fā)現(xiàn)摸到黑球的頻率在0.6附近波動(dòng),據(jù)此可以估算黑球的個(gè)數(shù)約為      個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案