(2011內(nèi)蒙古赤峰,25,14分)如圖(圖1、圖2),四邊形ABCD是邊長為4的正方形,點E在線段BC上,∠AEF=90°,且EF交正方形外角平分線CP于點F,F(xiàn)N⊥BC,交BC的延長線于點N。
(1)若點E是BC的中點(如圖1),AE與EF相等嗎?為什么?
(2)點E在BC間運動時(如圖2),設BE=x,△ECF的面積為y。
①求y與x的函數(shù)關系式;
②當x取何值時,y有最大值,并求出這個最大值。
解:(1)相等。
理由:∵四邊形ABCD是正方形,點E是BC的中點
∴∠B=∠DCN="90°." AB=BC=2BE,
∴∠BAE+∠BEA=90°.
∵∠AEF=90°
∴∠AEB+∠FEC=90°.,
∴∠BAE=∠FEN.
∵CF是∠DCN的角平分線,∠FNC=90°。
∴∠FCN=∠CFN=45°.
∴FN=CN.
在Rt△ABE和Rt△ENF中

∴EN=2FN,∴EC+CN=2CN,∴FN="BE" .
∴Rt△ABE≌Rt△ENF.
∴AE=EF.
方法二:如圖,取AB的中點M,連結ME. 
∵四邊形ABCD是正方形,
∴AB=BC,∠B=∠DCN=90°,
∵點E是BC的中點
∴AM=MB=BE=EC
在Rt△MBE中,∠BME=∠BEM=45°.
∴∠AME=135°;
∵CF是∠DCN的角平分線,
∴∠FCN=45°.
∴∠ECF=135°.
∴∠AME="∠ECF" ;
∵∠AEF="90° " ;
∴∠AEB+∠FEC="90°" ;
在Rt△ABE中,∠BAE+∠AEB=90°.
∴∠BAE="∠FEN " ;
∴△AME≌△ECF ;
∴AE="EF" 。

∴BE(EC+CN)="CN(BE+EC)" ;
∴BE·EC+ BE·CN =" BE·CN" +CN·EC ;
∴BE·EC =" CN·EC" ;
∴BE =" CN " ;
∴BE ="FN" =" x" ,     
。

當x =2時,y有最大值為2.解析:
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011內(nèi)蒙古赤峰,24,12分)如圖,直線y=x+3與坐標軸分別交于A、B兩點,拋物線經(jīng)過點A、B,頂點為C,連結CB并延長交x軸于點E,點D與點B關于拋物線的對稱軸MN對稱。
(1)求拋物線的解析式及頂點C的坐標;
(2)求證:四邊形ABCD是直角梯形。

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(廣東佛山卷)數(shù)學 題型:解答題

(2011內(nèi)蒙古赤峰,24,12分)如圖,直線y=x+3與坐標軸分別交于A、B兩點,拋物線經(jīng)過點A、B,頂點為C,連結CB并延長交x軸于點E,點D與點B關于拋物線的對稱軸MN對稱。

(1)求拋物線的解析式及頂點C的坐標;

(2)求證:四邊形ABCD是直角梯形。

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(廣東佛山卷)數(shù)學 題型:解答題

(2011內(nèi)蒙古赤峰,23,12分)為了對學生進行愛國主義教育,某校組織學生去看演出。有甲乙兩種票,已知甲乙兩種票的單價比為4:3,單價和為42元。

(1)甲、乙兩種票的單價分別是多少元?

(2)學校計劃拿出不超過750元的資金,讓七年級一班的36名學生首先觀看,且規(guī)定購買甲種票必須多于15張,有哪幾種購買方案?

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(廣東佛山卷)數(shù)學 題型:填空題

(2011內(nèi)蒙古赤峰,16,3分)如圖,EF是△ABC的中位線,將△AEF 沿AB

方向平移到△EBD的位置, 點D在BC上,已知△AEF的面積為5,則圖中陰影部分的面

積為_____________。

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(廣東佛山卷)數(shù)學 題型:填空題

(2011內(nèi)蒙古赤峰,14,3分)化簡的結果是____________。

 

查看答案和解析>>

同步練習冊答案