【題目】如圖,已知點(diǎn)A(3,0),以A為圓心作⊙A與Y軸切于原點(diǎn),與x軸的另一個(gè)交點(diǎn)為B,過B作⊙A的切線l.
(1)以直線l為對稱軸的拋物線過點(diǎn)A及點(diǎn)C(0,9),求此拋物線的解析式;
(2)拋物線與x軸的另一個(gè)交點(diǎn)為D,過D作⊙A的切線DE,E為切點(diǎn),求此切線長;
(3)點(diǎn)F是切線DE上的一個(gè)動(dòng)點(diǎn),當(dāng)△BFD與△EAD相似時(shí),求出BF的長.
【答案】(1);(2);(3)或.
【解析】
試題(1)已知了拋物線的頂點(diǎn)坐標(biāo),可將拋物線的解析式設(shè)為頂點(diǎn)坐標(biāo)式,然后將C點(diǎn)坐標(biāo)代入求解即可.
(2)由于DE是⊙A的切線,連接AE,那么根據(jù)切線的性質(zhì)知AE⊥DE,在Rt△AED中,AE、AB是圓的半徑,即AE=OA=AB=3,而A、D關(guān)于拋物線的對稱軸對稱,即AB=BD=3,由此可得到AD的長,進(jìn)而可利用勾股定理求得切線DE的長.
(3)若△BFD與EAD△相似,則有兩種情況需要考慮:①△AED∽△BFD,②△AED∽△FBD,根據(jù)不同的相似三角形所得不同的比例線段即可求得BF的長.
試題解析:(1)設(shè)拋物線的解析式為y=a(x-6)2+k;
∵拋物線經(jīng)過點(diǎn)A(3,0)和C(0,9),
∴,
解得:
∴y=(x-6)2-3.
(2)連接AE;
∵DE是⊙A的切線,
∴∠AED=90°,AE=3,
∵直線l是拋物線的對稱軸,點(diǎn)A,D是拋物線與x軸的交點(diǎn),
∴AB=BD=3,
∴AD=6;
在Rt△ADE中,DE2=AD2-AE2=62-32=27,
∴DE=3.
(3)當(dāng)BF⊥ED時(shí);
∵∠AED=∠BFD=90°,∠ADE=∠BDF,
∴△AED∽△BFD,
∴,
即,
∴BF=;
當(dāng)FB⊥AD時(shí),
∵∠AED=∠FBD=90°,∠ADE=∠FDB,
∴△AED∽△FBD,
∴,
即BF=;
∴BF的長為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAP是等腰直角三角形,∠OAP=90°,點(diǎn)A在第四象限,點(diǎn)P坐標(biāo)為(8,0),拋物線y=ax2+bx+c經(jīng)過原點(diǎn)O和A、P兩點(diǎn).
(1)求拋物線的函數(shù)關(guān)系式.
(2)點(diǎn)B是y軸正半軸上一點(diǎn),連接AB,過點(diǎn)B作AB的垂線交拋物線于C、D兩點(diǎn),且BC=AB,求點(diǎn)B坐標(biāo);
(3)在(2)的條件下,點(diǎn)M是線段BC上一點(diǎn),過點(diǎn)M作x軸的垂線交拋物線于點(diǎn)N,求△CBN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示,若△ABC內(nèi)一點(diǎn)P滿足∠PAC=∠PBA=∠PCB,則點(diǎn)P為△ABC的布洛卡點(diǎn).三角形的布洛卡點(diǎn)(Brocard point)是法國數(shù)學(xué)家和數(shù)學(xué)教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當(dāng)時(shí)的人們所注意,1875年,布洛卡點(diǎn)被一個(gè)數(shù)學(xué)愛好者法國軍官布洛卡(Brocard 1845﹣1922)重新發(fā)現(xiàn),并用他的名字命名.問題:已知在等腰直角三角形DEF中,∠EDF=90°,若點(diǎn)Q為△DEF的布洛卡點(diǎn),DQ=1,則EQ+FQ=( )
A.5 B.4 C.3+ D.2+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)的圖象相交于點(diǎn)A(1,4)和點(diǎn)B(n,).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時(shí),直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2011年國家對“酒后駕車”加大了處罰力度,出臺(tái)了不準(zhǔn)酒后駕車的禁令,某記者在一停車場對開車的司機(jī)進(jìn)行了相關(guān)的調(diào)查,本次調(diào)查結(jié)果共有四種情況:①有時(shí)會(huì)喝點(diǎn)酒開車;②已戒酒或從不喝酒;③酒后不開車或請專業(yè)司機(jī)代駕;④平時(shí)喝酒,但開車當(dāng)天不喝酒.將這次調(diào)查情況整理并繪制成如下尚不完整的統(tǒng)計(jì)圖,請根據(jù)相關(guān)信息,解答下列問題.
(1)該記者本次一共調(diào)查
了 名司機(jī).
(2)求圖①中④所在扇形的圓心角,并補(bǔ)全圖②.
(3)在本次調(diào)查中,記者隨機(jī)采訪其中一名司機(jī),求他屬于第②種情況的概率.
(4)請估計(jì)在開車的10萬名司機(jī)中,違反“酒駕”禁令的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組請結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得____________________;
(Ⅱ)解不等式②,得_______________________;
(III)把不等式①和②的解集在數(shù)軸上表示出來:
(IV)原不等式組的解集為________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,點(diǎn)C和點(diǎn)M重合,點(diǎn)B、C(M)、N在同一直線上,令Rt△PMN不動(dòng),矩形ABCD沿MN所在直線以每秒1cm的速度向右移動(dòng),至點(diǎn)C與點(diǎn)N重合為止,設(shè)移動(dòng)x秒后,矩形ABCD與△PMN重疊部分的面積為y,則y與x的大致圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)M是BC的中點(diǎn).
(1)在AM上求作一點(diǎn)E,使△ADE∽△MAB(尺規(guī)作圖,不寫作法);
(2)在(1)的條件下,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在半徑等于5 cm的圓內(nèi)有長為cm的弦,則此弦所對的圓周角為
A.60°B.120°C.60°或120°D.30°或120°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com