已知:如圖,在△ABC中,∠A=55°,H是高BD、CE的交點,則∠BHC=     . 
125°

試題分析:根據(jù)三角形的高的性質(zhì)及四邊形的內(nèi)角和定理求解即可.
∵∠A=55°,BD、CE是高
∴∠BHC=360°-90°-90°-55°=125°.
點評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握三角形的高的性質(zhì),即可完成.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

圖(a)、圖(b)、圖(c)是三張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1.請在圖(a)、圖(b)、圖(c)中,分別畫出符合要求(1),(2),(3)的圖形,所畫圖形各頂點必須與方格紙中的小正方形頂點重合.

(1)畫一個底邊為4,面積為8的等腰三角形;
(2)畫一個面積為10的等腰直角三角形;
(3)畫一個面積為12的平行四邊形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若等腰三角形兩條邊的長分別是11cm和23cm,則該三角形的周長是____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在如下圖的紙片ABCD中,∠B=120°,∠D=50°,如果將其右下角向內(nèi)折出三角形PCR,恰使CP//AB,RC//AD,那么∠C=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小明和小方分別設(shè)計了一種求n邊形的內(nèi)角和(n-2)×180°(n為大于2的整數(shù))的方案:

(1)小明是在n邊形內(nèi)取一點P,然后分別連結(jié)PA1PA2、…、PAn(如圖1);
(2)小紅是在n邊形的一邊A1A2上任取一點P,然后分別連結(jié)PA4、PA5、…、PA1(如圖2).
請你評判這兩種方案是否可行?如果不行的話,請你說明理由;如果可行的話,請你沿著方案的設(shè)計思路把多邊形的內(nèi)角和求出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在剛做好的門框架上,工人師傅為了避免門框變形,在矩形的框架上斜釘一根木條,這是利用           原理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在△ABC中,已知∠B=45°,∠C=30°,AB=,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,∠B、∠C的平分線相交于F,過點F作DE∥BC,交AB于D,交AC于E,那么下列結(jié)論正確的是           .

①△BDF、△CEF都是等腰三角形; ②DE=BD+CE;
③BD=CE;        ④△ADE的周長為AB+AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠B=90°,BC=6,∠C=30°.點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(t>0).過點D作DF⊥BC于點F,連接DE、EF.

(1)求證:AE=DF.(2分)
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明現(xiàn)由.(5分)
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.(5分)

查看答案和解析>>

同步練習(xí)冊答案