過(guò)邊長(zhǎng)為1的正方形的中心O引兩條相互垂直的射線,分別與正方形的邊交于A,B兩點(diǎn),則線段AB長(zhǎng)的取值范圍是   
【答案】分析:設(shè)A、B分別是正方形MNPQ的邊MN和NP上的點(diǎn),根據(jù)正方形的性質(zhì)可求得AB的長(zhǎng),因?yàn)檫呴L(zhǎng)為1,從而不難求得其取值范圍.
解答:解:設(shè)A、B分別是正方形MNPQ的邊MN和NP上的點(diǎn),
∵O是正方形MNPQ的中心,
∴OM=ON,∠OMN=∠ONM=45°,∠MON=90°,
∴∠AOM+∠AON=90°,
∵OA⊥OB,
∴∠AOB=90°,
∴∠BON+∠AON=90°,
∴∠AOM=∠BON,
∴△AOM≌△BON(ASA),
∴OA=OB,
∴△AOB是等腰直角三角形,
∴AB=OA,
∵正方形MNPQ的邊長(zhǎng)是1,
∴OM=,O到MN的距離等于(O到MN的垂線段的長(zhǎng)度),
≤OA≤
∴AB的取值范圍是:≤AB≤1.
故答案為:≤AB≤1.
點(diǎn)評(píng):解決本題的關(guān)鍵是作出輔助線構(gòu)造全等三角形.連接中心和相關(guān)的正方形頂點(diǎn)是常用的輔助線方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖線段AB的端點(diǎn)在邊長(zhǎng)為1的正方形網(wǎng)格的格點(diǎn)上,現(xiàn)將線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐?img alt="精英家教網(wǎng)" src="http://thumb.zyjl.cn/pic3/upload/images/200911/42/e6cde7e9.png" style="vertical-align:middle;FLOAT:right;" />轉(zhuǎn)90°得到線段AC.
(1)請(qǐng)你用尺規(guī)在所給的網(wǎng)格中畫(huà)出線段AC及點(diǎn)B經(jīng)過(guò)的路徑;
(2)若將此網(wǎng)格放在一平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(1,3),點(diǎn)B的坐標(biāo)為(-2,-1),則點(diǎn)C的坐標(biāo)為
 
;
(3)線段AB在旋轉(zhuǎn)到線段AC的過(guò)程中,線段AB掃過(guò)的區(qū)域的面積為
 
;
(4)若有一張與(3)中所說(shuō)的區(qū)域形狀相同的紙片,將它圍成一個(gè)幾何體的側(cè)面,則該幾何體底面圓的半徑長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)過(guò)邊長(zhǎng)為1的正方形的中心O引兩條相互垂直的射線,分別與正方形的邊交于A,B兩點(diǎn),則線段AB長(zhǎng)的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河北省秦皇島市海港區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(三)(解析版) 題型:填空題

過(guò)邊長(zhǎng)為1的正方形的中心O引兩條相互垂直的射線,分別與正方形的邊交于A,B兩點(diǎn),則線段AB長(zhǎng)的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(04)(解析版) 題型:填空題

(2004•淄博)過(guò)邊長(zhǎng)為1的正方形的中心O引兩條相互垂直的射線,分別與正方形的邊交于A,B兩點(diǎn),則線段AB長(zhǎng)的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(06)(解析版) 題型:填空題

(2004•淄博)過(guò)邊長(zhǎng)為1的正方形的中心O引兩條相互垂直的射線,分別與正方形的邊交于A,B兩點(diǎn),則線段AB長(zhǎng)的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案