【題目】材料:解形如(x+a)4+(x+b)4=c的一元四次方程時,可以先求常數(shù)a和b的均值,然后設(shè)y=x+.再把原方程換元求解,用種方法可以成功地消去含未知數(shù)的奇次項,使方程轉(zhuǎn)化成易于求解的雙二次方程,這種方法叫做“均值換元法.
例:解方程:(x﹣2)4+(x﹣3)4=1
解:因為﹣2和﹣3的均值為,所以,設(shè)y=x﹣,原方程可化為(y+)4+(y﹣)4=1,
去括號,得:(y2+y+)2+(y2﹣y+)2=1
y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1
整理,得:2y4+3y2﹣ =0(成功地消去了未知數(shù)的奇次項)
解得:y2=或y2=(舍去)
所以y=±,即x﹣=±.所以x=3或x=2.
(1)用閱讀材料中這種方法解關(guān)于x的方程(x+3)4+(x+5)4=1130時,先求兩個常數(shù)的均值為______.
設(shè)y=x+____.原方程轉(zhuǎn)化為:(y﹣_____)4+(y+_____)4=1130.
(2)用這種方法解方程(x+1)4+(x+3)4=706
【答案】(1)4,4,1,1;(2)x=2或x=﹣6.
【解析】
(1)可以先求常數(shù)3和5的均值4,然后設(shè)y=x+4,原方程可化為(y﹣1)4+(y+1)4=1130;
(2)可以先求常數(shù)1和3的均值2,然后設(shè)y=x+2,原方程可化為(y﹣1)4+(y+1)4=706,再整理化簡求出y的值,最后求出x的值.
(1)因為3和5的均值為4,所以,設(shè)y=x+4,原方程可化為(y﹣1)4+(y+1)4=1130,
故答案為4,4,1,1;
(2)因為1和3的均值為2,所以,設(shè)y=x+2,原方程可化為(y﹣1)4+(y+1)4=706,
去括號,得:(y2﹣2y+1)2+(y2+2y+1)2=706,
y4+4y2+1﹣4y3+2y2﹣4y+y4+4y2+1+4y3+2y2+4y=706,
整理,得:2y4+12y2﹣704=0(成功地消去了未知數(shù)的奇次項),
解得:y2=16或y2=﹣22(舍去)
所以y=±4,即x+2=±4.所以x=2或x=﹣6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于反比例函數(shù),下列說法正確的個數(shù)是( )
①函數(shù)圖象位于第一、三象限;②函數(shù)值 y 隨 x 的增大而減小;③若 A(-1, ),B(2,),C(1,)是圖象上三個點,則 <<;④P 為圖象上任一點,過 P 作 PQ⊥y 軸于點 Q,則△OPQ 的面積是定值.
A.1 個B.2 個C.3 個D.4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為8,是的中點,是邊上的動點,連結(jié),以點為圓心,長為半徑作.
(1)當(dāng)________時,;
(2)當(dāng)與正方形的邊相切時,求的長;
(3)設(shè)的半徑為,請直接寫出正方形中恰好有兩個頂點在圓內(nèi)的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解:
如圖①,在中,若,,求邊上的中線的取值范圍.
可以用如下方法:將繞著點逆時針旋轉(zhuǎn)得到,在中,利用三角形三邊的關(guān)系即可判斷中線的取值范圍是______;
(2)問題解決:
如圖②,在中,是邊上的中點,于點,交于點,交于點,連接,求證:;
(3)問題拓展:
如圖③,在四邊形中,,,,以為頂點作一個的角,角的兩邊分別交、于、兩點,連接,探索線段,,之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC為等腰直角三角形∠ACB=90°,過點C作直線CM,D為直線CM上一點,如果CE=CD且EC⊥CD.
(1)求證:△ADC≌△BEC;
(2)如果EC⊥BE,證明:AD∥EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國很多城市水資源缺乏,為了加強(qiáng)居民的節(jié)水意識,某市制定了每月用水8噸以內(nèi)(包括8噸)和用水8噸以上兩種收費標(biāo)準(zhǔn)(收費標(biāo)準(zhǔn):每噸水的價格),某用戶每月應(yīng)交水費y(元)是用水量x(噸)的函數(shù),其函數(shù)圖象如圖所示.
(1)求出自來水公司在這兩個用水范圍內(nèi)的收費標(biāo)準(zhǔn);
(2)若芳芳家6月份共交水費28.1元,請寫出用水量超過8噸時應(yīng)交水費y(元)與用水量x(噸)之間的函數(shù)關(guān)系,并求出芳芳家6月份的用水量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線、是緊靠某湖泊的兩條相互垂直的公路,曲線段是該湖泊環(huán)湖觀光大道的一部分.現(xiàn)準(zhǔn)備修建一條直線型公路,用以連接兩條公路和環(huán)湖觀光大道,且直線與曲線段有且僅有一個公共點.已知點到、的距離分別為和,點到的距離為,點到的距離為.若分別以、為軸、軸建立平面直角坐標(biāo)系,則曲線段對應(yīng)的函數(shù)解析式為.
(1)求的值,并指出函數(shù)的自變量的取值范圍;
(2)求直線的解析式,并求出公路的長度(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小華和媽媽到大足北山游玩,身高1.5米的小華站在坡度為的山坡上的點觀看風(fēng)景,恰好看到對面的多寶塔,測得眼睛看到塔頂的仰角為,接著小華又向下走了米,剛好到達(dá)坡底,這時看到塔頂的仰角為,則多寶塔的高度約為( ).(精確到0.1米,參考數(shù)據(jù):)
A.51.0米B.52.5米C.27.3米D.28.8米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com