【題目】如圖:已知等邊三角形ABC,D為AC邊上的一動點,CD=nDA,連線段BD,M為線段BD上一點,∠AMD=60°,AM交BC于E.
(1)若n=1,則= . =;
(2)若n=2,求證:BM=6DM;
(3)當n=時,M為BD中點.
(直接寫結果,不要求證明)
【答案】(1)解:當n=1時,CD=DA,
∵△ABC是等邊三角形,
∴BD⊥AC,∠BAC=60°,
∴∠ADM=90°,
又∵∠AMD=60°,
∴∠MAD=30°,
∴∠BAE=∠BAC﹣∠MAD=30°,即∠BAE=∠EAD,
∴AE為△ABC的中線,
∴=1;
在△AMD中,MD=AM,(30°角所對的直角邊等于斜邊的一半)
∵∠BAM=∠ABM=30°,
∴AM=BM,
∴=2.
(2)證明:∠AMD=∠ABD+∠BAE=60°
∠CAE+∠BAE=60°
∴∠ABD=∠CAE
又∵BA=CA,∠BAD=∠ACE=60°
∴△BAD≌△ACE(ASA)
∴AD=CE∴CD=BE
作CF∥BD交AE于F,
∴===①,==②,
∴①×②得== ,
∴BM=6DM.
(3)解:∵M為BD中點,
∴BM=MD,
∵△BAD≌△ACE(ASA)
∴AD=CE
∴CD=BE
∵△AMD∽△ACE,△BME∽△BCD
∴AD=③,DC=④,
③④得CD=AD,
∴n= .
【解析】此題為考查三角形中線段的倍數(shù)關系,相關知識點的綜合應用能力,解題關鍵在如何作輔助線.
(1)CD=nDA,當n=1時,CD=DA,據(jù)等邊三角形ABC的三線合一,可以得出∠BDA=90°,由∠AMD=60°,可得∠EAD=30°,
又∠BAC=60°,可得∠BAE=30°,AE為∠BAC的角平分線.依據(jù)三線合一可得BE=EC.容易得AM=2MD,AM=BM.問題得到解決.
(2)若n=2,則CD=2DA,△ABC是等邊三角形,∠AMD=60°,可證明△BAD≌△ACE,得AD=CE,CD=BE;作輔助線CF∥BD交AE于F,可得===①,==②,觀察①②的乘積,可得BM、DM的數(shù)量關系.
(3)由M為BD中點,可知BM=MD.由∠AMD=60°,△ABC為等邊三角形,可得△AMD∽△ACE,△BME∽△BCD,由相似三角形對應邊成比例,可得AD=,DC=,運用比例的性質合理變形,問題可求.
【考點精析】本題主要考查了等邊三角形的性質和平行線分線段成比例的相關知識點,需要掌握等邊三角形的三個角都相等并且每個角都是60°;三條平行線截兩條直線,所得的對應線段成比例才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象交反比例函數(shù)(x>0)圖象于點A、B,交x軸于點C.
(1)求m得取值范圍;
(2)若點A的坐標是(2,﹣4),且,求m的值和一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB分別與兩坐標軸交于點A(4,0).B(0,8),點C的坐標為(2,0).
(1)求直線AB的解析式;
(2)在線段AB上有一動點P.
①過點P分別作x,y軸的垂線,垂足分別為點E,F,若矩形OEPF的面積為6,求點P的坐標.
②連結CP,是否存在點P,使與相似,若存在,求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點(﹣2,y1),(﹣1,y2),(1,y3)都在直線y=﹣3x+b上,則y1,y2,y3的值的大小關系是( )
A. y1>y2>y3 B. y1<y2<y3 C. y3>y1>y2 D. y3<y1<y2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解某班同學一周的課外閱讀量,任選班上15名同學進行調查,統(tǒng)計如表,則這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( )
閱讀量(單位:本/周) | 0 | 1 | 2 | 3 |
人數(shù)(單位:人) | 1 | 4 | 6 | 4 |
A.1,2B.2,2C.4,6D.6,6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com