【題目】1)如圖1,在矩形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,過點(diǎn)O作直線EFBD,且交AD于點(diǎn)E,交BC于點(diǎn)F,連接BE,DF,且BE平分∠ABD

①求證:四邊形BFDE是菱形;

②直接寫出∠EBF的度數(shù).

2)把(1)中菱形BFDE進(jìn)行分離研究,如圖2,GI分別在BF,BE邊上,且BGBI,連接GD,HGD的中點(diǎn),連接FH,并延長FHED于點(diǎn)J,連接IJIH,IFIG.試探究線段IHFH之間滿足的關(guān)系,并說明理由;

3)把(1)中矩形ABCD進(jìn)行特殊化探究,如圖3,矩形ABCD滿足ABAD時(shí),點(diǎn)E是對(duì)角線AC上一點(diǎn),連接DE,作EFDE,垂足為點(diǎn)E,交AB于點(diǎn)F,連接DF,交AC于點(diǎn)G.請(qǐng)直接寫出線段AG,GEEC三者之間滿足的數(shù)量關(guān)系.

【答案】(1)詳見解析;②60°.(2)IHFH;(3)EG2AG2+CE2

【解析】

1)①由DOE≌△BOF,推出EOOF,∵OBOD,推出四邊形EBFD是平行四邊形,再證明EBED即可.

②先證明∠ABD2ADB,推出∠ADB30°,延長即可解決問題.

2IHFH.只要證明IJF是等邊三角形即可.

3)結(jié)論:EG2AG2+CE2.如圖3中,將ADG繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到DCM,先證明DEG≌△DEM,再證明ECM是直角三角形即可解決問題.

1)①證明:如圖1中,

∵四邊形ABCD是矩形,

ADBC,OBOD

∴∠EDO=∠FBO,

DOEBOF中,

,

∴△DOE≌△BOF,

EOOF,∵OBOD,

∴四邊形EBFD是平行四邊形,

EFBDOBOD,

EBED

∴四邊形EBFD是菱形.

②∵BE平分∠ABD,

∴∠ABE=∠EBD

EBED,

∴∠EBD=∠EDB,

∴∠ABD2ADB

∵∠ABD+ADB90°,

∴∠ADB30°,∠ABD60°,

∴∠ABE=∠EBO=∠OBF30°,

∴∠EBF60°

2)結(jié)論:IHFH

理由:如圖2中,延長BEM,使得EMEJ,連接MJ

∵四邊形EBFD是菱形,∠B60°,

EBBFEDDEBF,

∴∠JDH=∠FGH

DHJGHF中,

,

∴△DHJ≌△GHF,

DJFGJHHF,

EJBGEMBI,

BEIMBF

∵∠MEJ=∠B60°,

∴△MEJ是等邊三角形,

MJEMNI,∠M=∠B60°

BIFMJI中,

∴△BIF≌△MJI,

IJIF,∠BFI=∠MIJ,∵HJHF,

IHJF

∵∠BFI+BIF120°,

∴∠MIJ+BIF120°

∴∠JIF60°,

∴△JIF是等邊三角形,

RtIHF中,∵∠IHF90°,∠IFH60°,

∴∠FIH30°

IHFH

3)結(jié)論:EG2AG2+CE2

理由:如圖3中,將ADG繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到DCM,

∵∠FAD+DEF90°,

AFED四點(diǎn)共圓,

∴∠EDF=∠DAE45°,∠ADC90°,

∴∠ADF+EDC45°,

∵∠ADF=∠CDM,

∴∠CDM+CDE45°=∠EDG,

DEMDEG中,

,

∴△DEG≌△DEM,

GEEM

∵∠DCM=∠DAG=∠ACD45°,AGCM,

∴∠ECM90°

EC2+CM2EM2

EGEM,AGCM

GE2AG2+CE2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E,F分別在邊ADCD上,

1)若AB6AECF,點(diǎn)EAD的中點(diǎn),連接AE,BF

如圖1,求證:BEBF3

如圖2,連接AC,分別交AE,BFM,M,連接DM,DN,求四邊形BMDN的面積.

2)如圖3,過點(diǎn)DDHBE,垂足為H,連接CH,若∠DCH22.5°,則的值為   (直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了“讀好書,助成長”系列活動(dòng),并準(zhǔn)備購置一批圖書,購書前 ,對(duì)學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計(jì)圖,如圖所示,根據(jù)統(tǒng)計(jì)圖所提供的信息,回答下列問題:

(1)本次調(diào)查共抽查了名學(xué)生,兩幅統(tǒng)計(jì)圖中的m= , n=.
(2)已知該校共有960名學(xué)生,請(qǐng)估計(jì)該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?
(3)學(xué)校要舉辦讀書知識(shí)競(jìng)賽,七年(1)班要在班級(jí)優(yōu)勝者2男1女中隨機(jī)選送2人參賽,求選送的兩名參賽學(xué)生為1男1女的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段

1)如圖1,點(diǎn)沿線段自點(diǎn)向點(diǎn)的速度運(yùn)動(dòng),同時(shí)點(diǎn)沿線段點(diǎn)向點(diǎn)的速度運(yùn)動(dòng),幾秒鐘后,兩點(diǎn)相遇?

2)如圖1,幾秒后,點(diǎn)兩點(diǎn)相距?

3)如圖2,,,當(dāng)點(diǎn)的上方,且時(shí),點(diǎn)繞著點(diǎn)30/秒的速度在圓周上逆時(shí)針旋轉(zhuǎn)一周停止,同時(shí)點(diǎn)沿直線點(diǎn)向點(diǎn)運(yùn)動(dòng),假若點(diǎn)兩點(diǎn)能相遇,求點(diǎn)的運(yùn)動(dòng)速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,動(dòng)點(diǎn)E,F分別從DC兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng).

1)如圖1,當(dāng)點(diǎn)E在邊DC上自DC移動(dòng),同時(shí)點(diǎn)F在邊CB上自CB移動(dòng)時(shí),連接AEDF交于點(diǎn)P,請(qǐng)你寫出AEDF的數(shù)量關(guān)系和位置關(guān)系,并說明理;

2)如圖2,當(dāng)EF分別在邊CD,BC的延長線上移動(dòng)時(shí),連接AE,DF,(1)中的結(jié)論還成立嗎?(請(qǐng)你直接回答,不需證明);連接AC,求ACE為等腰三角形時(shí)CECD的值;

3)如圖3,當(dāng)EF分別在直線DC,CB上移動(dòng)時(shí),連接AEDF交于點(diǎn)P,由于點(diǎn)E,F的移動(dòng),使得點(diǎn)P也隨之運(yùn)動(dòng),請(qǐng)你畫出點(diǎn)P運(yùn)動(dòng)路徑的草圖.AD=2,試求出線段CP的最大值.

1 2 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn) 、 、 的坐標(biāo)分別為 、 ,先將 沿一確定方向平移得到 ,點(diǎn) 的對(duì)應(yīng)點(diǎn) 的坐標(biāo)是 ,再將 繞原點(diǎn) 順時(shí)針旋轉(zhuǎn) 得到 ,點(diǎn) 的對(duì)應(yīng)點(diǎn)為點(diǎn)

(1)畫出
(2)求出在這兩次變換過程中,點(diǎn) 經(jīng)過點(diǎn) 到達(dá) 的路徑總長;
(3)求線段 旋轉(zhuǎn)到 所掃過的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙ 的圓心 在反比例函數(shù) 的圖像上,且與 軸、 軸相切于點(diǎn) ,一次函數(shù) 的圖像經(jīng)過點(diǎn) ,且與 軸交于點(diǎn) ,與⊙ 的另一個(gè)交點(diǎn)為點(diǎn) .

(1)求 的值及點(diǎn) 的坐標(biāo);
(2)求 長及 的大小;
(3)若將⊙ 沿 軸上下平移,使其與 軸及直線 均相切,求平移的方向及平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點(diǎn).若四邊形EFGH為菱形,則對(duì)角線AC、BD應(yīng)滿足條件__________

查看答案和解析>>

同步練習(xí)冊(cè)答案