(2005•常德)某中學部分同學參加全國初中數(shù)學競賽,取得了優(yōu)異的成績,指導老師統(tǒng)計了所有參賽同學的成績(成績都是整數(shù),試題滿分120分),并且繪制了“頻率分布直方圖”(如圖).請回答:
(1)該中學參加本次數(shù)學競賽的有多少名同學?
(2)如果成績在90分以上(含90分)的同學獲獎,那么該中學參賽同學的獲獎率是多少?
(3)這次競賽成績的中位數(shù)落在哪個分數(shù)段內(nèi)?
(4)圖中還提供了其它信息,例如該中學沒有獲得滿分的同學等等,請再寫出兩條信息.

【答案】分析:(1)觀察直方圖,可得學生總數(shù)=頻數(shù)之和;
(2)因為成績在90分以上(含90分)的有7+5+2人,共有32人,由此即可求出獲獎率;
(3)因為共有32人,4+6+8=18,所以排序后,可得中位數(shù)在第3段內(nèi);
(4)可從成績的最低分或人數(shù)最多的分數(shù)段等來描述.
解答:解:(1)4+6+8+7+5+2=32,
所以參加本次數(shù)學競賽的有32名同學;

(2)
所以該中學的參賽同學獲獎率是43.75%;

(3)∵共有32人,
∴中位數(shù)是第16和第17個數(shù)和的一半,
∵第16和第17個數(shù)都落在第三小組,
∴中位數(shù)落在80~90分數(shù)段內(nèi);

(4)該中學參賽同學的成績均不低于60分;
成績在80~90分數(shù)段的人數(shù)最多.
點評:本題需仔細分析題意,觀察直方圖,從中尋找有用的信息,即可解決問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《反比例函數(shù)》(03)(解析版) 題型:解答題

(2005•常德)某小型開關(guān)廠今年準備投入一定的經(jīng)費用于現(xiàn)有生產(chǎn)設備的改造以提高經(jīng)濟效益.通過測算:今年開關(guān)的年產(chǎn)量y(萬只)與投入的改造經(jīng)費x(萬元)之間滿足3-y與x+1成反比例,且當改造經(jīng)費投入1萬元時,今年的年產(chǎn)量是2萬只.
(1)求年產(chǎn)量y(萬只)與改造經(jīng)費x(萬元)之間的函數(shù)解析式.(不要求寫出x的取值范圍)
(2)已知每生產(chǎn)1萬只開關(guān)所需要的材料費是8萬元.除材料費外,今年在生產(chǎn)中,全年還需支付出2萬元的固定費用.
①求平均每只開關(guān)所需的生產(chǎn)費用為多少元?(用含y的代數(shù)式表示)
(生產(chǎn)費用=固定費用+材料費)
②如果將每只開關(guān)的銷售價定位“平均每只開關(guān)的生產(chǎn)費用的1.5倍”與“平均每只開關(guān)所占改造費用的一半”之和,那么今年生產(chǎn)的開關(guān)正好銷完.問今年需投入多少改造經(jīng)費,才能使今年的銷售利潤為9.5萬元?
(銷售利潤=銷售收入一生產(chǎn)費用-改造費用)

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《反比例函數(shù)》(04)(解析版) 題型:解答題

(2005•常德)某小型開關(guān)廠今年準備投入一定的經(jīng)費用于現(xiàn)有生產(chǎn)設備的改造以提高經(jīng)濟效益.通過測算:今年開關(guān)的年產(chǎn)量y(萬只)與投入的改造經(jīng)費x(萬元)之間滿足3-y與x+1成反比例,且當改造經(jīng)費投入1萬元時,今年的年產(chǎn)量是2萬只.
(1)求年產(chǎn)量y(萬只)與改造經(jīng)費x(萬元)之間的函數(shù)解析式.(不要求寫出x的取值范圍)
(2)已知每生產(chǎn)1萬只開關(guān)所需要的材料費是8萬元.除材料費外,今年在生產(chǎn)中,全年還需支付出2萬元的固定費用.
①求平均每只開關(guān)所需的生產(chǎn)費用為多少元?(用含y的代數(shù)式表示)
(生產(chǎn)費用=固定費用+材料費)
②如果將每只開關(guān)的銷售價定位“平均每只開關(guān)的生產(chǎn)費用的1.5倍”與“平均每只開關(guān)所占改造費用的一半”之和,那么今年生產(chǎn)的開關(guān)正好銷完.問今年需投入多少改造經(jīng)費,才能使今年的銷售利潤為9.5萬元?
(銷售利潤=銷售收入一生產(chǎn)費用-改造費用)

查看答案和解析>>

科目:初中數(shù)學 來源:2005年湖南省常德市中考數(shù)學試卷(解析版) 題型:解答題

(2005•常德)某小型開關(guān)廠今年準備投入一定的經(jīng)費用于現(xiàn)有生產(chǎn)設備的改造以提高經(jīng)濟效益.通過測算:今年開關(guān)的年產(chǎn)量y(萬只)與投入的改造經(jīng)費x(萬元)之間滿足3-y與x+1成反比例,且當改造經(jīng)費投入1萬元時,今年的年產(chǎn)量是2萬只.
(1)求年產(chǎn)量y(萬只)與改造經(jīng)費x(萬元)之間的函數(shù)解析式.(不要求寫出x的取值范圍)
(2)已知每生產(chǎn)1萬只開關(guān)所需要的材料費是8萬元.除材料費外,今年在生產(chǎn)中,全年還需支付出2萬元的固定費用.
①求平均每只開關(guān)所需的生產(chǎn)費用為多少元?(用含y的代數(shù)式表示)
(生產(chǎn)費用=固定費用+材料費)
②如果將每只開關(guān)的銷售價定位“平均每只開關(guān)的生產(chǎn)費用的1.5倍”與“平均每只開關(guān)所占改造費用的一半”之和,那么今年生產(chǎn)的開關(guān)正好銷完.問今年需投入多少改造經(jīng)費,才能使今年的銷售利潤為9.5萬元?
(銷售利潤=銷售收入一生產(chǎn)費用-改造費用)

查看答案和解析>>

科目:初中數(shù)學 來源:2002年江蘇省無錫市中考數(shù)學試卷(解析版) 題型:解答題

(2005•常德)某小型開關(guān)廠今年準備投入一定的經(jīng)費用于現(xiàn)有生產(chǎn)設備的改造以提高經(jīng)濟效益.通過測算:今年開關(guān)的年產(chǎn)量y(萬只)與投入的改造經(jīng)費x(萬元)之間滿足3-y與x+1成反比例,且當改造經(jīng)費投入1萬元時,今年的年產(chǎn)量是2萬只.
(1)求年產(chǎn)量y(萬只)與改造經(jīng)費x(萬元)之間的函數(shù)解析式.(不要求寫出x的取值范圍)
(2)已知每生產(chǎn)1萬只開關(guān)所需要的材料費是8萬元.除材料費外,今年在生產(chǎn)中,全年還需支付出2萬元的固定費用.
①求平均每只開關(guān)所需的生產(chǎn)費用為多少元?(用含y的代數(shù)式表示)
(生產(chǎn)費用=固定費用+材料費)
②如果將每只開關(guān)的銷售價定位“平均每只開關(guān)的生產(chǎn)費用的1.5倍”與“平均每只開關(guān)所占改造費用的一半”之和,那么今年生產(chǎn)的開關(guān)正好銷完.問今年需投入多少改造經(jīng)費,才能使今年的銷售利潤為9.5萬元?
(銷售利潤=銷售收入一生產(chǎn)費用-改造費用)

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《數(shù)據(jù)收集與處理》(02)(解析版) 題型:解答題

(2005•常德)某中學部分同學參加全國初中數(shù)學競賽,取得了優(yōu)異的成績,指導老師統(tǒng)計了所有參賽同學的成績(成績都是整數(shù),試題滿分120分),并且繪制了“頻率分布直方圖”(如圖).請回答:
(1)該中學參加本次數(shù)學競賽的有多少名同學?
(2)如果成績在90分以上(含90分)的同學獲獎,那么該中學參賽同學的獲獎率是多少?
(3)這次競賽成績的中位數(shù)落在哪個分數(shù)段內(nèi)?
(4)圖中還提供了其它信息,例如該中學沒有獲得滿分的同學等等,請再寫出兩條信息.

查看答案和解析>>

同步練習冊答案