【題目】如圖,在△ABC中,∠B=60°,AD平分∠BAC,CE平分∠BCA,AD、CE交于點F,CD=CG,連結FG.
(1)求證:FD=FG;
(2)線段FG與FE之間有怎樣的數量關系,請說明理由;
(3)若∠B≠60°,其他條件不變,則(1)和(2)中的結論是否仍然成立?請直接寫出判斷結果,不必說明理由.
【答案】(1)見解析;(2)FG=FE,理由見解析;(3)(1)中結論成立.(2)中結論不成立.理由見解析
【解析】
(1)證明△CFD≌△CFG(SAS)即可解決問題;
(2)證明△AFG≌△AFE(ASA),可得FG=FE;
(3)結論:(1)中結論成立.(2)中結論不成立.
(1)證明:∵EC平分∠ACB,
∴∠FCD=∠FCG,
∵CG=CD,CF=CF,
∴△CFD≌△CFG(SAS),
∴FD=FG.
(2)結論:FG=FE.
理由:∵∠B=60°,
∴∠BAC+∠BCA=120°,
∵AD平分∠BAC,CE平分∠BCA,
∴∠ACF+∠FAC=(∠BCA+∠BAC)=60°,
∴∠AFC=120°,∠CFD=∠AFE=60°,
∵△CFD≌△CFG,
∴∠CFD=∠CFG=60°,
∴∠AFG=∠AFE=60°,
∵AF=AF,∠FAG=∠FAE,
∴△AFG≌△AFE(ASA),
∴FG=FE.
(3)結論:(1)中結論成立.(2)中結論不成立.
理由:①同法可證△CFD≌△CFG(SAS),
∴FD=FG.
②∵∠B≠60°,
∴無法證明∠AFG=∠AFE,
∴不能判斷△AFG≌△AFE,
∴(2)中結論不成立.
科目:初中數學 來源: 題型:
【題目】已知一組數9,17,25,33,…,(8n+1)(從左往右數,第1個數是9,第2個數是17,第3個數是25,第4個數是33,依此類推,第n個數是8n+1).設這組數的前n個數的和是sn.
(1)第5個數是多少?并求1892—s5的值;
(2)若n滿足方程=,則的值是整數嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示.在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的中垂線,E、N在BC上,則∠EAN=( 。
A. 58° B. 32° C. 36° D. 34°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖①,分別以△ABC的邊AB、AC為一邊向形外作正方形ABDE和正方形ACGF.求證S△AEF=S△ABC.
(2)如圖②,分別以△ABC的邊AB、AC、BC為邊向形外作正方形ABDE、ACGF、BCHI,可得六邊形DEFGHI,若S正方形ABDE=17,S正方形ACGF=25,S正方形BCHI=16,求S六邊形DEFGHI.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一三角形紙片ABC,∠A=70°,點D是AC邊上一點,沿BD方向剪開三角形紙片后,發(fā)現所得兩個紙片均為等腰三角形,則∠C的度數可以是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數的圖象經過點(2,3),頂點坐標(1,4)
(1)求該二次函數的解析式;
(2)圖象與x軸的交點為A、B,與y軸的交點為C,求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小王和小李都想去體育館,觀看在我縣舉行的“市長杯”青少年校園 足球聯(lián)賽,但兩人只有一張門票,兩人想通過摸球的方式來決定誰去觀看,規(guī)則如下: 在兩個盒子內分別裝入標有數字 1,2,3,4 的四個和標有數字 1,2,3 的三個完全相 同的小球,分別從兩個盒子中各摸出一個球,如果所摸出的球上的數字之和小于 6,那 么小王去,否則就是小李去.
(1)用樹狀圖或列表法求出小王去的概率;
(2)小李說:“這種規(guī)則不公平.”你認同他的說法嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:把Rt△ABC和Rt△DEF按如圖1擺放(點C與點E重合),點B、C(E)、F在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm,如圖2,△DEF從圖1的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿BA向點A勻速移動.當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設移動時間為t(s)(0<t<4.5).解答下列問題:
(1)用含t的代數式表示線段AP= ;
(2)當t為何值時,點E在∠A的平分線上?
(3)當t為何值時,點A在線段PQ的垂直平分線上?
(4)連接PE,當t=1(s)時,求四邊形APEC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數圖象上的一對對稱點,一次函數的圖象過點B、D.
(1)求二次函數的解析式;
(2)根據圖象直接寫出使一次函數值大于二次函數值的x的取值范圍;
(3)若直線與y軸的交點為E,連結AD、AE,求△ADE的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com