【題目】如圖,以△ABC的邊AC為直徑作⊙O交AB、BC于E、D,D恰為BC的中點,過C作⊙O的切線,與AB的延長線交于F,過B作BM⊥AF,交CF于M.
(1)求證:MB=MC;
(2)若MF=5,MB=3,求⊙O的半徑及弦AE的長.
【答案】(1)見解析;(2)EA=
【解析】
(1)連接AD,根據(jù)垂直平分線的判定和切線的性質證明即可;
(2)根據(jù)相似三角形的判定和性質解答即可.
(1)證明:連接AD,∵AC是⊙O的直徑,
∴∠ADC=90°,
∠ADB=90°,又D是BC的中點,
∴AD是線段BC的垂直平分線,
∴AB=AC,∠ABC=∠ACB,
∵BM⊥AF,CF是⊙O的切線,
∴∠ABM=∠ACM=90°,
∴∠MBC=∠MCB,MB=MC;
(2)∵MF=5,MB=3,
∴FB=4,由上知MC=3,FC=8,
∵∠MBF=∠ACF=90°,∠BFM=∠CFA,
∴△FBM∽△FCA,
∴,
即,
解得:CA=6,⊙O的半徑OA=3,
連結CE,則∠AEC=90°,由上知,∠F=∠ACE,則△EAC∽△BMF,
∴
解得:EA=
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),對稱軸為直線l,則下列結論:①abc>0;②a+b+c>0;③a+c>0;④a+b>0,正確的是( )
A. ①②④B. ②④C. ①③D. ①④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設你站在橋上測得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請求出立柱BH的長.(結果精確到0.1米, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年9月28日,某中學初三年級同學進行了中招體育模擬考試,王老師為了更加科學有效地制定后期訓練計劃,對本班同學的體考成績進行了統(tǒng)計,并繪制了如圖的條形統(tǒng)計圖和扇形統(tǒng)計圖,其中體育成績共分為五個等級:A:46分﹣50分;B:41分﹣45分C:36分﹣40分;D:31分﹣35分;E:30分及以下,請根據(jù)圖中所給的信息完成下列問題:
(1)將上面的條形統(tǒng)計圖補充完整:并計算扇形統(tǒng)計圖中E等級所對應的圓心角度數(shù)為 .
(2)該班A等級中共有5名同學獲得滿分,其中男同學只有2名,現(xiàn)從這5名同學中任選2名同學在班上進行經(jīng)驗交流,請用樹狀圖或列表法求恰好選到一名男同學和一名女同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖拋物線y=ax2+bx+c的對稱軸為直線x=1,且過點(3,0),下列結論:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正確的有( 。﹤.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+2x+3與x軸交于A,B,與y軸交于C,拋物線的頂點為D,直線l過C交x軸于E(4,0).
(1)寫出D的坐標和直線l的解析式;
(2)P(x,y)是線段BD上的動點(不與B,D重合),PF⊥x軸于F,設四邊形OFPC的面積為S,求S與x之間的函數(shù)關系式,并求S的最大值;
(3)點Q在x軸的正半軸上運動,過Q作y軸的平行線,交直線l于M,交拋物線于N,連接CN,將△CMN沿CN翻轉,M的對應點為M′.在圖2中探究:是否存在點Q,使得M′恰好落在y軸上?若存在,請求出Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=CB=2,以BC為邊向外作正方形BCDE,動點M從A點出發(fā),以每秒1個單位的速度沿著A—C—D的路線向D點勻速運動(M不與A、D重合);過點M作直線l⊥AD,l與路線A—B—D相交于點N,設運動時間為t秒:
(1)當點M在AC上時,BN=_____.(用含t的代數(shù)式表示)
(2)過N作NF⊥ED,垂足為F,矩形MDFN與△ABD重疊部分的面積為S,求S的最大值
(3)當點M在CD上時(含點C),是否存在點M,使△DEN為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市政府規(guī)定:若本市企業(yè)按生產(chǎn)成本價提供產(chǎn)品給大學生銷售,則政府給該企業(yè)補償補償額批發(fā)價生產(chǎn)成本價銷售量大學生小明投資銷售本市企業(yè)生產(chǎn)的一種新型節(jié)能燈,調查發(fā)現(xiàn),每月銷售量件與銷售單價元之間的關系近似滿足一次函數(shù):已知這種節(jié)能燈批發(fā)價為每件12元,設它的生產(chǎn)成本價為每件m元
(1)當時.
①若第一個月的銷售單價定為20元,則第一個月政府要給該企業(yè)補償多少元?
②設所獲得的利潤為元,當銷售單價定為多少元時,每月可獲得最大利潤?
(2)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得超過30元今年三月小明獲得贏利,此時政府給該企業(yè)補償了920元,若m,x都是正整數(shù),求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com