【題目】從甲學(xué)校到乙學(xué)校有A1、A2、A3三條線路,從乙學(xué)校到丙學(xué)校有B1、B2二條線路.
(1)利用樹狀圖或列表的方法表示從甲學(xué)校到丙學(xué)校的線路中所有可能出現(xiàn)的結(jié)果;
(2)小張任意走了一條從甲學(xué)校到丙學(xué)校的線路,求小張恰好經(jīng)過了B1線路的概率是多少?

【答案】
(1)解:利用列表或樹狀圖的方法表示從甲校到丙校的線路所有可能出現(xiàn)的結(jié)果如下:

A1

A2

A3

B1

(A1、B1

(A2、B1

(A3、B1

B2

(A1、B2

(A2、B2

(A3、B2


(2)解:∴小張從甲學(xué)校到丙學(xué)校共有6條不同的線路,其中經(jīng)過B1線路有3條,

∴P(小張恰好經(jīng)過了B1線路)=


【解析】(1)依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結(jié)果,注意要不重不漏;(2)依據(jù)表格或樹狀圖即可求得小張從甲學(xué)校到丙學(xué)校共有6條不同的線路,其中經(jīng)過B1線路有3條,然后根據(jù)概率公式即可求出該事件的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一條長為40cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個(gè)正方形.
(1)要使這兩個(gè)正方形的面積之和等于52cm2 , 那么這段鐵絲剪成兩段后的長度分別是多少?
(2)兩個(gè)正方形的面積之和可能等于48cm2嗎?若能,求出兩段鐵絲的長度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正△ABC的邊長為3cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度,沿A→B→C的方向運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止,設(shè)運(yùn)動(dòng)時(shí)間為x(秒),y=PC2 , 則y關(guān)于x的函數(shù)的圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,圓心角∠AOB=120°,弦AB=2 cm,則OA=cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式組 的解集在數(shù)軸上正確表示的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線y=- x+3與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)C(0,n)是y軸上一點(diǎn),把坐標(biāo)平面沿直線AC折疊,使點(diǎn)B剛好落在x軸上,則點(diǎn)C的坐標(biāo)是( )
A.(0, )
B.(0, )
C.(0,3)
D.(0,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠投入生產(chǎn)一種機(jī)器的總成本為2000萬元.當(dāng)該機(jī)器生產(chǎn)數(shù)量至少為10臺,但不超過70臺時(shí),每臺成本y與生產(chǎn)數(shù)量x之間是一次函數(shù)關(guān)系,函數(shù)y與自變量x的部分對應(yīng)值如下表:

x(單位:臺)

10

20

30

y(單位:萬元∕臺)

60

55

50


(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求該機(jī)器的生產(chǎn)數(shù)量;
(3)市場調(diào)查發(fā)現(xiàn),這種機(jī)器每月銷售量z(臺)與售價(jià)a(萬元∕臺)之間滿足如圖所示的函數(shù)關(guān)系.該廠生產(chǎn)這種機(jī)器后第一個(gè)月按同一售價(jià)共賣出這種機(jī)器25臺,請你求出該廠第一個(gè)月銷售這種機(jī)器的利潤.(注:利潤=售價(jià)﹣成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)口袋中放有290個(gè)涂有紅、黑、白三種顏色的質(zhì)地相同的小球.若紅球個(gè)數(shù)是黑球個(gè)數(shù)的2倍多40個(gè).從袋中任取一個(gè)球是白球的概率是
(1)求袋中紅球的個(gè)數(shù);
(2)求從袋中任取一個(gè)球是黑球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=(x﹣m)2﹣(x﹣m),其中m是常數(shù).
(1)求證:不論m為何值,該拋物線與x軸一定有兩個(gè)公共點(diǎn);
(2)若該拋物線的對稱軸為直線x=
①求該拋物線的函數(shù)解析式;
②把該拋物線沿y軸向上平移多少個(gè)單位長度后,得到的拋物線與x軸只有一個(gè)公共點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案