【題目】倡導(dǎo)研究性學(xué)習(xí)方式,著力教材研究,習(xí)題研究,是學(xué)生跳出題海,提高學(xué)習(xí)能力和創(chuàng)新能力的有效途徑.下面是一案例,請(qǐng)同學(xué)們認(rèn)真閱讀、研究,完成“類(lèi)比猜想”及后面的問(wèn)題.
習(xí)題解答
習(xí)題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,說(shuō)明理由.
解:
∵正方形ABCD中,AB=AD,∠BAD=∠ADC=90°
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADE′,點(diǎn)F、D、E′在一條直線(xiàn)上.
∴∠E′AF=90°-45°=45°=∠EAF.
又∵AE′=AE,AF=AF
∴△AE′FF≌△AEF(SAS)
∴EF=E′F=DE′+DF=BE+DF.
習(xí)題研究.
觀察分析:
觀察圖1,由解答可知,該題有用的條件是①.ABCD是四邊形,點(diǎn)E、F分別在邊BC、CD上;②.AB=AD;③.∠B=∠D=90°∠;④.∠EAF=∠BAD.
類(lèi)比猜想:
在四邊形ABCD中,點(diǎn)E、F分別在BC、CD上,當(dāng)AB=AD,∠B=∠D時(shí),還有EF=BE+DF嗎?
要解決上述問(wèn)題,可從特例入手,請(qǐng)同學(xué)們思考:如圖2,在菱形ABCD中,點(diǎn)E、F分別在BC、CD上,當(dāng)∠BAD=120°,∠EAF=60°時(shí),還有EF=BE+DF嗎?試證明.
(2)在四邊形ABCD中,點(diǎn)E、F分別在邊BC、CD上,當(dāng)AB=AD,∠B+∠D=180°,∠EAF=∠BAD時(shí),還有EF=BE+DF嗎?使用圖3證明.
歸納概括:
反思前面的解答,思考每個(gè)條件的作用,可以得到一個(gè)結(jié)論“EF=BE+DF”的一般命題: .
【答案】答案見(jiàn)解析.
【解析】
試題分析:(1)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°至△ADE′,如圖(2),連結(jié)E′F,根據(jù)菱形和旋轉(zhuǎn)的性質(zhì)得到AE=AE′,∠EAF=∠E′AF,利用“SAS”證明△AEF≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120°,則點(diǎn)F、D、E′不共線(xiàn),所以DE′+DF>EF,即由BE+DF>EF;
(2)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)∠BAD的度數(shù)至△ADE′,如圖(3),根據(jù)旋轉(zhuǎn)的性質(zhì)得到AE′=AE,∠EAF=∠E′AF,然后利用“SAS”證明△AEF≌△AE′F,得到EF=E′F,由于∠ADE′+∠ADC=180°,知F、D、E′共線(xiàn),因此有EF=DE′+DF=BE+DF;根據(jù)前面的條件和結(jié)論可歸納出結(jié)論.
試題解析:(1)如圖(2),
當(dāng)∠BAD=120°,∠EAF=60°時(shí),EF=BE+DF不成立,EF<BE+DF.
理由如下:
∵在菱形ABCD中,∠BAD=120°,∠EAF=60°,
∴AB=AD,∠1+∠2=60°,∠B=∠ADC=60°,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°至△ADE′,如圖(2),連結(jié)E′F,
∴∠EAE′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°,
∴∠2+∠3=60°,
∴∠EAF=∠E′AF,
在△AEF和△AE′F中
,
∴△AEF≌△AE′F(SAS),
∴EF=E′F,
∵∠ADE′+∠ADC=120°,即點(diǎn)F、D、E′不共線(xiàn),
∴DE′+DF>EF
∴BE+DF>EF;
(2)當(dāng)AB=AD,∠B+∠D=180°,∠EAF=∠BAD時(shí),EF=BE+DF成立.
理由如下:如圖(3),
∵AB=AD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)∠BAD的度數(shù)至△ADE′,如圖(3),
∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,
∵∠B+∠D=180°,
∴∠ADE′+∠D=180°,
∴點(diǎn)F、D、E′共線(xiàn),
∵∠EAF=∠BAD,
∴∠1+∠2=∠BAD,
∴∠2+∠3=∠BAD,
∴∠EAF=∠E′AF,
在△AEF和△AE′F中
∴△AEF≌△AE′F(SAS),
∴EF=E′F,
∴EF=DE′+DF=BE+DF;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一元二次方程x2﹣2x﹣3=0配方后所得的方程是( 。
A. (x﹣2)2=4 B. (x﹣1)2=4 C. (x﹣1)2=3 D. (x﹣2)2=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形的三邊分別為3,x,7,那么x的取值范圍是( )
A.4<x<10
B.1<x<10
C.3<x<7
D.4<x<6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】截至去年底,國(guó)家開(kāi)發(fā)銀行對(duì)“一帶一路”沿線(xiàn)國(guó)家累計(jì)貸款超過(guò)1600億美元,其中1600億用科學(xué)記數(shù)法表示為( )
A. 16×1010 B. 1.6×1010 C. 1.6×1011 D. 0.16×1012
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】冰冰家新安裝了一臺(tái)太陽(yáng)能熱水器,一天她測(cè)量發(fā)現(xiàn)18:00時(shí),太陽(yáng)能熱水器水箱內(nèi)水的溫度是80℃,以后每小時(shí)下降4℃,第二天,冰冰早晨起來(lái)后測(cè)得水箱內(nèi)水的溫度為32℃,請(qǐng)你猜一猜她起床的時(shí)間是__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,AC=BC,點(diǎn)D為BC的中點(diǎn),DE⊥AB,垂足為點(diǎn)E,過(guò)點(diǎn)B作BG∥AC交DE的延長(zhǎng)線(xiàn)于點(diǎn)G.
(1)求證:DB=BG;
(2)當(dāng)∠ACB=90°時(shí),如圖②,連接AD、CG,求證:AD⊥CG。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)AB和拋物線(xiàn)交于點(diǎn)A(-4,0),B(0,4),且點(diǎn)B是拋物線(xiàn)的頂點(diǎn).
(1)求直線(xiàn)AB和拋物線(xiàn)的解析式.
(2)點(diǎn)P是直線(xiàn)上方拋物線(xiàn)上的一點(diǎn),求當(dāng)△PAB面積最大時(shí)點(diǎn)P的坐標(biāo).
(3)M是直線(xiàn)AB上一動(dòng)點(diǎn),在平面直角坐標(biāo)系內(nèi)是否存在點(diǎn)N,使以O(shè)、B、M、N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com