【題目】A超市在一次周年慶典當(dāng)天開展購物抽獎活動,凡當(dāng)天在該超市購物的顧客,均有一次抽獎機(jī)會,抽獎規(guī)則如下:將如圖所示的圖形轉(zhuǎn)盤平均分成四個扇形,分別標(biāo)上1,3,5,7四個數(shù)字,抽獎?wù)哌B續(xù)轉(zhuǎn)動轉(zhuǎn)盤兩次,當(dāng)每次停止后指針?biāo)干刃蝺?nèi)的數(shù)為每次所得數(shù)(若指針指在分界處重轉(zhuǎn)),當(dāng)兩次所得數(shù)字之和為2時,返現(xiàn)金20元,當(dāng)兩次所得數(shù)字之和為4時,返現(xiàn)金10元,當(dāng)兩次所得數(shù)字之和為6時,返現(xiàn)金5元.

(1)試用樹狀圖或列表的方法,表示出王大媽這次抽獎中所有可能出現(xiàn)的結(jié)果.

(2)試求王大媽在參加這次抽獎活動中,能獲得返現(xiàn)金的概率是多少?

【答案】(1)答案見解析;(2)

【解析】解:(1)樹狀圖:

列表法:

(2)共有16種等可能的結(jié)果,其中可獲得返現(xiàn)金的有6次,其概率為P(返現(xiàn)金)=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸、軸分別交于點(diǎn)B、 A,點(diǎn)D、E分別是AO、AB的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)D出發(fā),沿DE方向勻速運(yùn)動,速度為1cm/s;與此同時,點(diǎn)Q從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動,速度為2cm/s,當(dāng)點(diǎn)P停止運(yùn)動時,點(diǎn)Q也停止運(yùn)動.連接PQ,設(shè)運(yùn)動時間為.

(1)分別寫出點(diǎn)P和Q坐標(biāo)(用含t的代數(shù)式表示);

(2)①當(dāng)點(diǎn)Q在BE之間運(yùn)動時,設(shè)五邊形PQBOD的面積為(cm2),求y與t之間的函數(shù)關(guān)系式;

②在①的情況下,是否存在某一時刻t,使PQ分四邊形BODE兩部分的面積之比為S△PQE:S五邊形PQBOD=1:29?若存在,求出此時t的值;若不存在,請說明理由;

(3)以P為圓心、PQ長為半徑作圓,請問:在整個運(yùn)動過程中,當(dāng)t為何值時,⊙P能與△ABO的一邊相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1+∠2=180°,∠3=∠B,試說明∠AED=∠ACB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BOC=9°,點(diǎn)A在OB上,且OA=1,按下列要求畫圖: 以A為圓心,1為半徑向右畫弧交OC于點(diǎn)A1 , 得第1條線段AA1;
再以A1為圓心,1為半徑向右畫弧交OB于點(diǎn)A2 , 得第2條線段A1A2
再以A2為圓心,1為半徑向右畫弧交OC于點(diǎn)A3 , 得第3條線段A2A3;…
這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角△ABC中,∠BAC=45°,AB=2,∠BAC的平分線交BC于點(diǎn)D,M、N分別是AD和AB上的動點(diǎn),則BM+MN的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明過程:
已知:如圖,∠D=123°,∠EFD=57°,∠1=∠2
求證:∠3=∠B
證明:∵∠D=123°,∠EFD=57°(已知)
∴∠D+∠EFD=180°
∴AD∥
又∵∠1=∠2(已知)
∥BC(內(nèi)錯角相等,兩直線平行)
∴EF∥
∴∠3=∠B(兩直線平行,同位角相等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)Aa,4)和B3,b)關(guān)于y軸對稱,則a、b的值分別為(  )

A. 3,4 B. 2,-4 C. -3,4 D. -3-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:2a2+ab=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EF∥AD,∠1=∠2.說明:∠DGA+∠BAC=180°.請將說明過程填寫完成.
解:∵EF∥AD,(已知)
∴∠2= . (
又∵∠1=∠2,(
∴∠1=∠3,(
∴AB∥ , (
∴∠DGA+∠BAC=180°.(

查看答案和解析>>

同步練習(xí)冊答案