【題目】閱讀下列文字:

我們知道,對(duì)于一個(gè)圖形,通過兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)學(xué)等式,例如由如圖給出了若干個(gè)邊長(zhǎng)為和邊長(zhǎng)為的小正方形紙片及若干個(gè)邊長(zhǎng)為的長(zhǎng)方形紙片,如圖是由如圖提供的幾何圖形拼接而得,可以得到

請(qǐng)解答下列問題:

(1)請(qǐng)寫出如圖中所表示的數(shù)學(xué)等式:______________________________;

(2)用(1)中所得到的結(jié)論,解決下面的問題:已知的值為_________.

(3)①請(qǐng)按要求利用所給的紙片拼出一個(gè)長(zhǎng)方形,要求所拼出圖形的面積為并將所拼出的圖像畫在的方框中;

②再利用另一種計(jì)算面積的方法,可將多項(xiàng)式分解因式,即_________.

【答案】1)(a+b+c2=a2+b2+c2+2ab+2bc+2ac;2453)①見解析② (2a+b)(a+b)

【解析】

1)根據(jù)分割法求出面積的方法即可寫出等式:(a+b+c2=a2+b2+c2+2ab+2bc+2ac;

2)根據(jù)(1)中的等式直接代入即可求出;(3)①根據(jù)題意畫出拼出的圖形,使其面積為,②根據(jù)所拼的圖像,利用矩形的面積求法即可把分解因式.

1)(a+b+c2=a2+b2+c2+2ab+2bc+2ac;

2)∵

=a+b+c2-2(ab+bc+ac)=112-2×38=45

3)①如圖:

=(2a+b)(a+b)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=∠ABC90°,AD1BC3,點(diǎn)E是邊CD的中點(diǎn),連接BE并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)F,連接CF

(1)求證:四邊形BDFC是平行四邊形;

(2)CBCD,求四邊形BDFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一拱橋所在弧所對(duì)的圓心角為120°(∠AOB=120°),半徑為5 m,一艘6 m寬的船裝載一集裝箱,已知箱頂寬3.2 m,離水面AB2 m,問此船能過橋洞嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線x軸交于兩點(diǎn)A、點(diǎn)Ax軸的正半軸上,點(diǎn)Bx軸的負(fù)半軸上y軸交于點(diǎn)C

m的取值范圍;

如果1,在該拋物線對(duì)稱軸右邊圖象上求一點(diǎn)P的坐標(biāo),使得

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料后解決問題:

小明遇到下面一個(gè)問題:

計(jì)算(2+1)(22+1)(24+1)(28+1).

經(jīng)過觀察,小明發(fā)現(xiàn)如果將原式進(jìn)行適當(dāng)?shù)淖冃魏罂梢猿霈F(xiàn)特殊的結(jié)構(gòu),進(jìn)而可以應(yīng)用平方差公式解決問題,具體解法如下:(2+1)(22+1)(24+1)(28+1)

=(2+1)(2﹣1)(22+1)(24+1)(28+1)

=(22﹣1)(22+1)(24+1)(28+1)

=(24﹣1)(24+1)(28+1)

=(28﹣1)(28+1)

=216﹣1

請(qǐng)你根據(jù)小明解決問題的方法,試著解決以下的問題:

(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____

(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____

(3)化簡(jiǎn):(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一副直角三角尺疊放如圖1所示,現(xiàn)將45°的三角尺ADE固定不動(dòng),將含30的三角尺ABC繞頂點(diǎn)A順時(shí)針轉(zhuǎn)動(dòng),使兩塊三角尺至少有一組邊互相平行,如圖2,當(dāng)∠BAD=15°時(shí),BCDE,則∠BAD(0°<∠BAD180°)其它所有可能符合條件的度數(shù)為(

A.60°135°B.45°、60°、105°、135°C.30°45°D.以上都有可能

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:平面內(nèi)的直線l1l2相交于點(diǎn)O,對(duì)于該平面內(nèi)任意一點(diǎn)M,點(diǎn)M到直線l1、l2的距離分別為a、b,則稱有序非負(fù)實(shí)數(shù)對(duì)(ab)是點(diǎn)M的“距離坐標(biāo)”,根據(jù)上述定義,距離坐標(biāo)為(2,1)的點(diǎn)的個(gè)數(shù)有(  )

A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題10分)如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點(diǎn)D,過點(diǎn)D作⊙O的切線,交AB于點(diǎn)E,交CA的延長(zhǎng)線于點(diǎn)F.

(1)求證:FE⊥AB;

(2)當(dāng)EF=6,=時(shí),求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a0,c0)與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,且以AB為直徑的圓經(jīng)過點(diǎn)C.

(1)若點(diǎn)A(﹣2,0),點(diǎn)B(8,0),求ac的值;

(2)若點(diǎn)A(x1,0),B(x2,0),試探索ac是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說明理由.

(3)若點(diǎn)D是圓與拋物線的交點(diǎn)(D A、B、C 不重合),在(1)的條件下,坐標(biāo)軸上是否存在一點(diǎn)P,使得以P、B、C為頂點(diǎn)的三角形與△CBD相似?若存在,請(qǐng)直接寫出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案