【題目】如圖,點D,E分別在線段AB, AC上,CDBE相交于O點,已知AD=AE,現(xiàn)添加以下哪個條件仍不能判定ABE≌△ACD

A. BD= CEB. B=CC. BE=CDD. AB=AC

【答案】C

【解析】

欲使ABE≌△ACD,已知AD=AE,可根據(jù)全等三角形判定定理AAS、SASASA添加條件,逐一證明即可.

AD=AE,∠A為公共角,

A. 如添BD=CE,根據(jù)等量關系可得AB=AC,利用SAS即可證明ABEACD

B. 如添加∠B=C,利用AAS即可證明ABEACD;

C. 如添BE=CD,因為SSA,不能證明ABEACD,所以此選項不能作為添加的條件;

D. 如添AB=AC,利用SAS即可證明ABEACD.

故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學活動課上,老師準備了若干個如圖1的三種紙片,A種紙片是邊長為a的正方形,B種紙片是邊長為b的正方形,C種紙片是寬為a,長為b的長方形。用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形。

1)請用兩種不同的方式表示圖2大正方形的面積。

方式1 ;

方式2 .

2)觀察圖2,請你寫出下列三個代數(shù)式:,,之間的等量關系。

3)類似地,請你用圖1中的三種紙片拼一個圖形驗證:

4)根據(jù)(2)題中的等量關系,解決如下問題:

①已知:,,求的值;

②已知,求的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A1,1),B(-1,1),C(-1,-2),D1,-2.把一條長為2018個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在點A處,并按ABCD的規(guī)律繞在ABCD的邊上,則細線另一端所在位置的點的坐標是(

A. (-1,0B. 12C. 1,-1D. 0,-2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AC平分∠PAQ,點BB分別在邊AP、AQ上,如果添加一個條件,即可推出AB=AB,下列條件中無法推出AB=AB的是(

A. BB′⊥AC B. BC=BC C. ACB=ACB D. ABC=∠ABC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點的坐標分別為A(1,0),B(2,﹣3),C(4,﹣2).

(1)畫出ABC關于x軸的對稱圖形A1B1C1;

(2)畫出A1B1C1向左平移3個單位長度后得到的A2B2C2;

(3)如果AC上有一點P(m,n)經(jīng)過上述兩次變換,那么對應A2C2上的點P2的坐標是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】轉化是數(shù)學中的一種重要思想,即把陌生的問題轉化成熟悉的問題,把復雜的問題轉化成簡單的問題,把抽象的問題轉化為具體的問題.

(1)請你根據(jù)已經(jīng)學過的知識求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數(shù);

(2)若對圖(1)中星形截去一個角,如圖(2),請你求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù);

(3)若再對圖(2)中的角進一步截去,你能由題(2)中所得的方法或規(guī)律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數(shù)嗎?只要寫出結論,不需要寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點EABC外部,DBC邊上,DEACF,若∠1=2,C=E, AE=AC,

(1)求證: ABC≌△ADE;

(2) 求證:2=3;

(3)當∠2=90°時,判斷ABD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)經(jīng)過點(-1,0),對稱軸為:直線x=1,則下列結論中正確的是:( )

A.a>0
B.當x>1時,y隨x的增大而增大
C. <0
D.x=3是一元二次方程ax2+bx+c=0(a≠0)的一個根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是ABCD邊AB上的一點,射線CP交DA的延長線于點E,則圖中相似的三角形有( )

A.0對
B.1對
C.2對
D.3對

查看答案和解析>>

同步練習冊答案