【題目】如圖,A、BC在同一直線上,

(1)若∠A=∠3,依據(jù)__________,可得_____________;

(2)若∠______=∠______,則依據(jù)內(nèi)錯角相等,兩直線平行,可得DBEC

(3)若∠______+∠_______180°,則ADBE,依據(jù)是____________;

【答案】1)同位角相等,兩直線平行;ADBE;(2)∠2,∠E;(3)∠A,∠ABE;同旁內(nèi)角互補,兩直線平行.

【解析】

1A∠3是同位角,根據(jù)同位角相等,兩直線平行即可解答;

2)要利用內(nèi)錯角相等,兩直線平行,證明DBEC,需要找出一對內(nèi)錯角相等;

(3)要利用同旁內(nèi)角互補,兩直線平行,證明ADBE,需要找出一對同旁內(nèi)角互補的角,據(jù)此解答.

(1)若∠A=∠3,依據(jù)同位角相等,兩直線平行,可得ADBE;

(2)∠2E,則依據(jù)內(nèi)錯角相等,兩直線平行,可得DBEC;

(3)AABE180°,則ADBE,依據(jù)是同旁內(nèi)角互補,兩直線平行;

故答案為:(1)同位角相等,兩直線平行;AD,BE;(2)2,E;(3)A,ABE;同旁內(nèi)角互補,兩直線平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,BAC=90°,點D是直線AB上的一動點(不和A、B重合),BECDE,交直線ACF.

(1)D在邊AB上時,請證明:BD=AB﹣AF;

(2)試探索:點DAB的延長線或反向延長線上時,請在備用圖中畫出圖形,(1)中的結(jié)論是否成立?若不成立,請直接寫出正確結(jié)論(不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知線段AB、CD相交于點O,連接AC、BD,則我們把形如這樣的圖形稱為“8字型”.

(1)求證:∠A+∠C=∠B+D;

(2)如圖2,若∠CAB和∠BDC的平分線APDP相交于點P,且與CD、AB分別相交于點M、N.

以線段AC為邊的“8字型”有   個,以點O為交點的“8字型”有   ;

若∠B=100°,∠C=120°,求∠P的度數(shù);

若角平分線中角的關(guān)系改為“∠CAP=∠CAB,∠CDP=∠CDB”,試探究∠P∠B、∠C之間存在的數(shù)量關(guān)系,并證明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC是等邊三角形,DAC邊上的一點,DGAB,延長ABE,使BE=GD,連接DEBCF.

(1)求證:GF=BF;

(2)ABC的邊長為a,BE的長為b,且a,b滿足(a﹣7)2+b2﹣6b+9=0,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年5月6日,中國第一條具有自主知識產(chǎn)權(quán)的長沙磁浮線正式開通運營,該路線連接了長沙火車南站和黃花國際機場兩大交通樞紐,沿線生態(tài)綠化帶走廊的建設(shè)尚在進行中,屆時將給乘客帶來美的享受.星城渣土運輸公司承包了某標段的土方運輸任務(wù),擬派出大、小兩種型號的渣土運輸車運輸土方,已知2輛大型渣土運輸車與3輛小型渣土運輸車一次共運輸土方31噸,5輛大型渣土運輸車與6輛小型渣土運輸車一次共運輸土方70噸.

(1)一輛大型渣土運輸車和一輛小型渣土運輸車一次各運輸土方多少噸?

(2)該渣土運輸公司決定派出大、小兩種型號的渣土運輸車共20輛參與運輸土方,若每次運輸土方總量不少于148噸,且小型渣土運輸車至少派出2輛,則有哪幾種派車方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知銳角三角形ABC,以點A為圓心,AC為半徑畫弧與BC交于點E,分別以點E、C為圓心,以大于 EC的長為半徑畫弧相交于點P,作射線AP,交BC于點D.若BC=5,AD=4,tan∠BAD= ,則AC的長為(
A.3
B.5
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,D在邊AC上,且

如圖1,填空______,______

如圖2,若M為線段AC上的點,過M作直線H,分別交直線AB、BC與點N、E

求證:是等腰三角形;

試寫出線段AN、CE、CD之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】任何一個正整數(shù)n都可以進行這樣的分解:np×qp、q是正整數(shù),且pq).如果p×qn的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×qn的最佳分解,并且規(guī)定Fn)=.例如18=1×18=2×9=3×6,這時就有F(18)=.請解答下列問題:

(1)計算:F(24);

(2)n為正整數(shù)時,求證:Fn3+2n2+n)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對角線長分別為6和8的菱形ABCD如圖所示,點O為對角線的交點,過點O折疊菱形,使B,B′兩點重合,MN是折痕.若B'M=1,則CN的長為____.

查看答案和解析>>

同步練習(xí)冊答案