解:(1)設(shè)拋物線的函數(shù)表達(dá)式y(tǒng)=a(x-1)(x+3),
∵拋物線與y軸交于點(diǎn)E(0,-3),將該點(diǎn)坐標(biāo)代人上式,得:a=1,
∴所求函數(shù)表達(dá)式y(tǒng)=(x-1)(x+3),即 y=x
2+ 2x- 3;
(2)∵點(diǎn)C是點(diǎn)A關(guān)于點(diǎn)B的對(duì)稱點(diǎn),點(diǎn)A(-3,0),點(diǎn)B(1,0),
∴點(diǎn)C的坐標(biāo)是C(5,0). 將點(diǎn)C的坐標(biāo)是C(5,0)代入y=-x+m,得m=5
∴直線CD的函數(shù)表達(dá)式為y=-x十5,
設(shè)K點(diǎn)的坐標(biāo)為( t, 0),則H點(diǎn)的坐標(biāo)為.(t,-t+5),G點(diǎn)的坐標(biāo)為 (t,t
2+2t-3).
∵點(diǎn)K為線段AB上一動(dòng)點(diǎn).
∴-3≤t≤1
∴HG= (-t+ 5)-(t
2+ 2t-3)=-t
2-3t+8=-(t+
)
2+
∵-3≤-
≤1,∴當(dāng)t=-
時(shí),線段HG長度有最大值
(3)∵點(diǎn)F是線段BC的中點(diǎn),點(diǎn)B(1,0),點(diǎn)C(5,0),
∴點(diǎn)F的坐標(biāo)為F(3,0).
∵直線l過點(diǎn)F且與y軸平行,
∴直線l的函數(shù)表達(dá)式為x=3
∵點(diǎn)M在直線l上,點(diǎn)N在拋物線上,
∴設(shè)點(diǎn)M的坐標(biāo)為M(3,m). 點(diǎn)N的坐標(biāo)為N(n,n
2+2n-3)
∵點(diǎn)A(-3,0),點(diǎn)C(5,0),
∴AC=8;
①若線段AC是以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形的邊,
則須MN//AC,且MN=AC=8
當(dāng)點(diǎn)N在點(diǎn)M的左側(cè)時(shí),MN=3-n,
∴3-n=8,解得:n=-5,
∴N點(diǎn)的坐標(biāo)為N(-5,12).
當(dāng)點(diǎn)N在點(diǎn)M的左側(cè)時(shí),MN=n-3
∴n-3=8,解得:n= 11,
∴N點(diǎn)的坐標(biāo)為,N(11,140).
②若線段AC是以點(diǎn)A,C,M,N為頂點(diǎn)的平行四邊形的對(duì)角線,
由“點(diǎn)C與點(diǎn)A關(guān)于點(diǎn)B中心對(duì)稱”知:點(diǎn)M與點(diǎn)N關(guān)于點(diǎn)B中心對(duì)稱,
取點(diǎn)F關(guān)于點(diǎn)B對(duì)稱點(diǎn)P,則點(diǎn)P的坐標(biāo)為P(-1,0). 過點(diǎn)P作NP⊥x釉,交拋物線于點(diǎn)N
將 x=-1代入y=x
2+2x-3,得:y=-4,
過點(diǎn)N,B作直線NB交直線l于點(diǎn)M
在△BPN和△BFM中
∵
∴△BPN≌△BFM,
∴NB = MB,
∴四邊形ANCM為平行四邊形,
∴坐標(biāo)為(-1,-4)的點(diǎn)N符合條件,
∴當(dāng)點(diǎn)N的坐標(biāo)為(-5,12),(11,140),(1,4)時(shí),以點(diǎn) A,C,M,N為頂點(diǎn)的四邊是平行四邊形。