【題目】如圖1為某教育網(wǎng)站一周內(nèi)連續(xù)7天日訪問總量的條形統(tǒng)計圖,如圖2為該網(wǎng)站本周學生日訪問量占日訪問總量的百分比統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息完成下列填空:
(1)這一周訪問該網(wǎng)站一共有 萬人次;
(2)周日學生訪問該網(wǎng)站有 萬人次;
(3)周六到周日學生訪問該網(wǎng)站的日平均增長率為 .
【答案】(1)10;(2)0.9;(3)44%
【解析】
(1)把條形統(tǒng)計圖中每天的訪問量人數(shù)相加即可得出答案;
(2)由星期日的日訪問總量為3萬人次,結(jié)合扇形統(tǒng)計圖可得星期日學生日訪問總量占日訪問總量的百分比為30%,繼而求得星期日學生日訪問總量;
(3)根據(jù)增長率的算數(shù)列出算式,再進行計算即可.
(1)這一周該網(wǎng)站訪問總量為:0.5+1+0.5+1+1.5+2.5+3=10(萬人次);
故答案為10;
(2)∵星期日的日訪問總量為3萬人次,星期日學生日訪問總量占日訪問總量的百分比為30%,
∴星期日學生日訪問總量為:3×30%=0.9(萬人次);
故答案為0.9;
(3)周六到周日學生訪問該網(wǎng)站的日平均增長率為:=44%;
故答案為44%.
科目:初中數(shù)學 來源: 題型:
【題目】已知AC=DC,AC⊥DC,直線MN經(jīng)過點A,作DB⊥MN,垂足為B,連接CB.
(1)直接寫出∠D與∠MAC之間的數(shù)量關(guān)系;
(2)①如圖1,猜想AB,BD與BC之間的數(shù)量關(guān)系,并說明理由;
②如圖2,直接寫出AB,BD與BC之間的數(shù)量關(guān)系;
(3)在MN繞點A旋轉(zhuǎn)的過程中,當∠BCD=30°,BD=時,直接寫出BC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家計劃2035年前實施新能源汽車,某公司為加快新舊動能轉(zhuǎn)換,提高公司經(jīng)濟效益,決定對近期研發(fā)出的一種新型能源產(chǎn)品進行降價促銷.根據(jù)市場調(diào)查:這種新型能源產(chǎn)品銷售單價定為200元時,每天可售出300個;若銷售單價每降低1元,每天可多售出5個.已知每個新型能源產(chǎn)品的成本為100元.
問:(1)設(shè)該產(chǎn)品的銷售單價為元,每天的利潤為元.則_________(用含的代數(shù)式表示)
(2)這種新型能源產(chǎn)品降價后的銷售單價為多少元時,公司每天可獲利32000元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,正方形ABCD在直角坐標系中,其中AB邊在y軸上,其余各邊均與坐標軸平行,直線l:y=x﹣5沿y軸的正方向以每秒1個單位的速度平移,在平移的過程中,該直線被正方形ABCD的邊所截得的線段長為m,平移的時間為t(秒),m與t的函數(shù)圖象如圖2所示,則圖2中b的值為( )
A.3B.5C.6D.10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,點是斜邊的中點.點從點出發(fā)以的速度向點運動,點同時從點出發(fā)以一定的速度沿射線方向運動,規(guī)定當點到終點時停止運動.設(shè)運動的時間為秒,連接、.
(1)填空:______;
(2)當且點運動的速度也是時,求證:;
(3)若動點以的速度沿射線方向運動,在點、點運動過程中,如果存在某個時間,使得的面積是面積的兩倍,請你求出時間的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,PD切⊙O于點C,與BA的延長線交于點D,DE⊥PO交PO延長線于點E,連接PB,∠EDB=∠EPB.
(1)求證:PB是的切線.
(2)若PB=6,DB=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為B(3,4)、A(﹣3,2)、C(1,0),正方形網(wǎng)格中,每個小正方形的邊長是一個單位長度.
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是 ;
(2)以點B為位似中心,在網(wǎng)格上畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為1:2,點C2的坐標是 ;(畫出圖形)
(3)若M(a,b)為線段AC上任一點,寫出點M的對應點M2的坐標 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB=BC,對角線AC、BD交于點O,BD平分∠ABC,過點D作DE⊥BC,交BC的延長線于點E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若DC=2,AC=4,求OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙0的直徑,點C在⊙0上,D是中點,若∠BAC=70°,求∠C.
下面是小雯的解法,請幫他補充完整:
解:在⊙0中,
∵D是的中點
∴BD=CD.
∴∠1=∠2( )(填推理的依據(jù)).
∵∠BAC=70°,
∴∠2=35°.
∵AB是⊙0的直徑,
∴∠ADB=90°( )(填推理的依據(jù)).
∴∠B=90°-∠2=55°.
∵A、B、C、D四個點都在⊙0上,
∴∠C+∠B=180°( )(填推理的依據(jù)).
∴∠C=180°-∠B= (填計算結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com