如圖,拋物線y=ax2-4ax+c(a≠0)經(jīng)過A(0,-1),B(5,0)兩點,點P是拋物線上的一個動點,且位于直線AB的下方(不與A,B重合),過點P作直線PQx軸,交AB于點Q,設點P的橫坐標為m

(1)求a,c的值;(4分)

(2)設PQ的長為S,求Sm的函數(shù)關(guān)系式,寫出m的取值范圍;(4分)

(3)以PQ為直徑的圓 與拋物線的對稱軸l有哪些位置關(guān)系?并寫出對應的m取值范圍.(不必寫過程)(4分)

解:∵拋物線y=ax2-4axcA(0,-1),B(5,0)

    解得:

(2)∵直線AB經(jīng)過A(0,-1),B(5,0)

∴直線AB的解析式為y=x -1

由(1)知拋物線的解析式為:y=x2x-1

∵點P的橫坐標為m,點P在拋物線上,點Q在直線AB上,PQx

Pmm 2m-1),Qm,m -1)

∴S=PQ=(m -1)-(m 2m-1)

即S=-m 2m   (0<m<5)

(3)拋物線的對稱軸l為:x=2

PQ為直徑的圓與拋物線的對稱軸l的位置關(guān)系有:

相離、相切、相交三種關(guān)系

相離時:0<m <m<5;

相切時:m m;

相交時:m

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2008年江西省南昌市初中畢業(yè)升學統(tǒng)一考試、數(shù)學試卷 題型:044

如圖,拋物線y1=-ax2-ax+1經(jīng)過點P,且與拋物線y2=ax2-ax-1,相交于A,B兩點.

(1)求a值;

(2)設y1=-ax2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(點E在點F的左邊),觀察M,N,E,F(xiàn)四點的坐標,寫出一條正確的結(jié)論,并通過計算說明;

(3)設A,B兩點的橫坐標分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于CD兩點,試問當x為何值時,線段CD有最大值?其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分8分)如圖,拋物線yax-5x+4ax軸相交于點A、B,且經(jīng)過點C(5,4).該拋物線頂點為P.

1.⑴求a的值和該拋物線頂點P的坐標.

2.⑵求DPAB的面積;

3.⑶若將該拋物線先向左平移4個單位,再向上平移2個單位,求出平移后拋物線的解析式.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分8分)如圖,拋物線yax-5x+4ax軸相交于點A、B,且經(jīng)過點C(5,4).該拋物線頂點為P.

【小題1】⑴求a的值和該拋物線頂點P的坐標.
【小題2】⑵求DPAB的面積;
【小題3】⑶若將該拋物線先向左平移4個單位,再向上平移2個單位,求出平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆江蘇省興化市九年級上學期期末四校聯(lián)考數(shù)學卷 題型:解答題

(本題滿分8分)如圖,拋物線yax-5x+4ax軸相交于點A、B,且經(jīng)過點C(5,4).該拋物線頂點為P.

【小題1】⑴求a的值和該拋物線頂點P的坐標.
【小題2】⑵求DPAB的面積;
【小題3】⑶若將該拋物線先向左平移4個單位,再向上平移2個單位,求出平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省興化市九年級上學期期末四校聯(lián)考數(shù)學卷 題型:解答題

(本題滿分8分)如圖,拋物線yax-5x+4ax軸相交于點A、B,且經(jīng)過點C(5,4).該拋物線頂點為P.

1.⑴求a的值和該拋物線頂點P的坐標.

2.⑵求DPAB的面積;

3.⑶若將該拋物線先向左平移4個單位,再向上平移2個單位,求出平移后拋物線的解析式.

 

查看答案和解析>>

同步練習冊答案