已知拋物線經(jīng)過坐標(biāo)原點(diǎn),與直線相交于A、B兩點(diǎn),軸、軸分別相交于點(diǎn)C和D;

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)若把拋物線向下平移,使得拋物線經(jīng)過點(diǎn)C,此時(shí)拋物線與直線 相交于另一點(diǎn)E,與軸相交于點(diǎn)F,求△CEF的面積;

(3)把拋物線上下平移,與直線相交于點(diǎn)G、K,能否使得CG:DK=

1:2,若能成立,請求出向上或向下平移幾個(gè)單位,若不能請說明理由。

解:(1)有題得:=

     ∴   

     ∴ 

     ∴ A(-1,),  B(2,2)

(2)把向下平移a個(gè)單位經(jīng)過點(diǎn)C,則拋物線變?yōu)椋?sub>

  又得,C(-2,0),  D(0,1)

∴ 0=(-2)2

∴ 

∴   =      

       

    

∴  E(3, )

又 C,F(xiàn)關(guān)于y軸對(duì)稱

∴  F(2,0)   ∴ CF=2-(-2)=4

∴S△CEF=×CF×E點(diǎn)縱坐標(biāo)的絕對(duì)值=×4×=5)

(3)設(shè)拋物線上下平移k個(gè)單位,G點(diǎn)坐標(biāo)為(m,),K點(diǎn)坐標(biāo)為(n,

①G在C上方時(shí)      ∴

解得k=0,沒有移動(dòng),舍去;

②G在C下方時(shí)

解得k=-14,即向下平移14個(gè)單位

所以,當(dāng)拋物線向下平移14個(gè)單位時(shí),滿足要求。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過坐標(biāo)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為A,且頂點(diǎn)M坐標(biāo)為(1,2),
(1)求該拋物線的解析式;
(2)現(xiàn)將它向右平移m(m>0)個(gè)單位,所得拋物線與x軸交于C、D兩點(diǎn),與原拋物線交于點(diǎn)P,△CDP的面積為S,求S關(guān)于m的關(guān)系式;
(3)當(dāng)m=2時(shí),點(diǎn)Q為平移后的拋物線的一動(dòng)點(diǎn),是否存在這樣的⊙Q,使得⊙Q與兩坐標(biāo)軸都相切?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖甲所示,已知拋物線經(jīng)過原點(diǎn)O和x軸上另一點(diǎn)E,頂點(diǎn)M的坐標(biāo)為(2,4);
(1)求拋物線函數(shù)關(guān)系式;
(2)矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3,將矩形ABCD以每秒1個(gè)單位長度的速度從圖甲所示的位置沿x軸的正方向勻速平移,同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖乙所示).
①當(dāng)t=
52
時(shí),判斷點(diǎn)P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點(diǎn)的多邊形面積為S,試問S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請說明理由;
③現(xiàn)將甲圖中的拋物線向右平移m(m>0)個(gè)單位,所得拋物線與x軸交于G、F兩點(diǎn),與原拋物線交于點(diǎn)Q,設(shè)△FGQ的面積為S,求S關(guān)于m的函關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線經(jīng)過坐標(biāo)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為A,且頂點(diǎn)M坐標(biāo)為(1,2),
(1)求該拋物線的解析式;
(2)現(xiàn)將它向右平移m(m>0)個(gè)單位,所得拋物線與x軸交于C、D兩點(diǎn),與原拋物線交于點(diǎn)P,△CDP的面積為S,求S關(guān)于m的關(guān)系式;
(3)當(dāng)m=2時(shí),點(diǎn)Q為平移后的拋物線的一動(dòng)點(diǎn),是否存在這樣的⊙Q,使得⊙Q與兩坐標(biāo)軸都相切?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年福建省福州市第十一中學(xué)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知拋物線經(jīng)過坐標(biāo)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為A,且頂點(diǎn)M坐標(biāo)為(1,2),
(1)求該拋物線的解析式;
(2)現(xiàn)將它向右平移m(m>0)個(gè)單位,所得拋物線與x軸交于C、D兩點(diǎn),與原拋物線交于點(diǎn)P,△CDP的面積為S,求S關(guān)于m的關(guān)系式;
(3)當(dāng)m=2時(shí),點(diǎn)Q為平移后的拋物線的一動(dòng)點(diǎn),是否存在這樣的⊙Q,使得⊙Q與兩坐標(biāo)軸都相切?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省衢州市江山二中九年級(jí)(上)第一次質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題

如圖甲所示,已知拋物線經(jīng)過原點(diǎn)O和x軸上另一點(diǎn)E,頂點(diǎn)M的坐標(biāo)為(2,4);
(1)求拋物線函數(shù)關(guān)系式;
(2)矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3,將矩形ABCD以每秒1個(gè)單位長度的速度從圖甲所示的位置沿x軸的正方向勻速平移,同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖乙所示).
①當(dāng)時(shí),判斷點(diǎn)P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點(diǎn)的多邊形面積為S,試問S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請說明理由;
③現(xiàn)將甲圖中的拋物線向右平移m(m>0)個(gè)單位,所得拋物線與x軸交于G、F兩點(diǎn),與原拋物線交于點(diǎn)Q,設(shè)△FGQ的面積為S,求S關(guān)于m的函關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案