【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長為半徑作,交射線OB于點(diǎn)D,連接CD;
(2)分別以點(diǎn)C,D為圓心,CD長為半徑作弧,交于點(diǎn)M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯(cuò)誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
【答案】D
【解析】
由作圖知CM=CD=DN,再利用圓周角定理、圓心角定理逐一判斷可得.
解:由作圖知CM=CD=DN,
∴∠COM=∠COD,故A選項(xiàng)正確;
∵OM=ON=MN,
∴△OMN是等邊三角形,
∴∠MON=60°,
∵CM=CD=DN,
∴∠MOA=∠AOB=∠BON=∠MON=20°,故B選項(xiàng)正確;
∵∠MOA=∠AOB=∠BON=20°,
∴∠OCD=∠OCM=80°,
∴∠MCD=160°,
又∠CMN=∠AON=20°,
∴∠MCD+∠CMN=180°,
∴MN∥CD,故C選項(xiàng)正確;
∵MC+CD+DN>MN,且CM=CD=DN,
∴3CD>MN,故D選項(xiàng)錯(cuò)誤;
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D、E是等邊△ABC的邊BC、AC上的點(diǎn),且CD=AE,AD、BE相交于P點(diǎn),BQ⊥AD于Q,已知PE=1,PQ=2.5,則AD等于( 。
A.5B.6C.7D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為3的等邊三角形,P是AB邊上的一個(gè)動點(diǎn),由A向B運(yùn)動(P不與A、B重合),Q是BC延長線上一動點(diǎn),與點(diǎn)P同時(shí)以相同的速度由C向BC延長線方向運(yùn)動(Q不與C重合),
(1)當(dāng)∠BPQ=90°時(shí),求AP的長;
(2)過P作PE⊥AC于點(diǎn)E,連結(jié)PQ交AC于D,在點(diǎn)P、Q的運(yùn)動過程中,線段DE的長是否發(fā)生變化?若不變,求出DE的長度;若變化,求出變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的兩邊落在坐標(biāo)軸上,反比例函數(shù)y=的圖象在第一象限的分支過AB的中點(diǎn)D交OB于點(diǎn)E,連接EC,若△OEC的面積為12,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,∠C是最小的一個(gè)內(nèi)角,過頂點(diǎn)B的一條直線交AC于點(diǎn)D,直線BD將原三角形分割成兩個(gè)等腰三角形△ABD和△BCD,△ABD中BD=AD,請?zhí)骄俊?/span>A與∠C的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形OBCD的邊OB在x軸上,反比例函數(shù)y1=(x>0)的圖象經(jīng)過菱形對角線的交點(diǎn)A,且交另一邊BC交于點(diǎn)F,點(diǎn)A的坐標(biāo)為(4,2).
(1)求反比例的函數(shù)的解析式;
(2)設(shè)經(jīng)過B,C兩點(diǎn)的一次函數(shù)的解析式為y2=mx+b,求y1<y2的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程x2﹣4x+k=0有兩個(gè)不相等的實(shí)數(shù)根
(1)求k的取值范圍;
(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0與x2+mx﹣1=0有一個(gè)相同的根,求此時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,設(shè)D為銳角△ABC內(nèi)一點(diǎn),∠ADB=∠ACB+90°.
(1)求證:∠CAD+∠CBD=90°;
(2)如圖2,過點(diǎn)B作BE⊥BD,BE=BD,連接EC,若ACBD=ADBC,
①求證:△ACD∽△BCE;
②求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com