【題目】以四邊形ABCD的邊ABAD為邊分別向外側(cè)作等邊三角形ABFADE,連接EB、FD,交點為G

(1)當四邊形ABCD為正方形時(如圖1),EBFD的數(shù)量關(guān)系是   ;

(2)當四邊形ABCD為矩形時(如圖2),EBFD具有怎樣的數(shù)量關(guān)系?請加以證明;

(3)四邊形ABCD由正方形到矩形到一般平行四邊形的變化過程中,∠EGD是否發(fā)生變化?如果改變,請說明理由;如果不變,請在圖3中求出∠EGD的度數(shù).

【答案】(1)EB=FD;(2)EB=FD,證明見解析;(3)不變,∠EGD=60°

【解析】試題分析:(1)EB=FD,利用正方形的性質(zhì)、等邊三角形的性質(zhì)和全等三角形的證明方法可證明△AFD≌△ABE,由全等三角形的性質(zhì)即可得到EB=FD;
(2)當四邊形ABCD為矩形時,EBFD仍舊相等,證明的思路同(1);
(3)四邊形ABCD由正方形到矩形到一般平行四邊形的變化過程中,∠EGD不發(fā)生變化,是一定值,為60°.

試題解析:

(1)EB=FD,

理由如下:

∵四邊形ABCD為正方形,

AB=AD,

∵以四邊形ABCD的邊AB、AD為邊分別向外側(cè)作等邊三角形ABFADE,

AF=AE,FAB=EAD=60°,

∵∠FAD=BAD+FAB=90°+60°=150°,

BAE=BAD+EAD=90°+60°=150°,

∴∠FAD=BAE,

AFDABE中,

∴△AFD≌△ABE,

EB=FD;

(2)EB=FD

證:∵△AFB為等邊三角形

AF=AB,FAB=60°

∵△ADE為等邊三角形,

AD=AE,EAD=60°

∴∠FAB+BAD=EAD+BAD,

即∠FAD=BAE

∴△FAD≌△BAE

EB=FD

(3)解:

同(2)易證:FAD≌△BAE,

∴∠AEB=ADF

設(shè)∠AEBx°,則∠ADF也為x°

于是有∠BED為(60﹣x)°,EDF為(60+x)°,

∴∠EGD=180°﹣BEDEDF

=180°﹣(60﹣x)°﹣(60+x)°

=60°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在一張長方形紙條上畫一條數(shù)軸.

(1)折疊紙條使數(shù)軸上表示的點與表示5的點重合,折痕與數(shù)軸的交點表示的數(shù)是 ;

(2)如果數(shù)軸上兩點之間的距離為8,經(jīng)過(1)的折疊方式能夠重合,那么左邊這個點表示的數(shù)是

(3)如圖2,點AB表示的數(shù)分別是、,數(shù)軸上有點C,使得AC=2BC,那么點C表示的數(shù)是 ;

(4)如圖2,若將此紙條沿A、B兩處剪開,將中間的一段紙條對折,使其左右兩端重合,這樣連續(xù)對折次后,再將其展開,求最左端的折痕與數(shù)軸的交點表示的數(shù).(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD是BC邊上的高,tanC= ,AC=3 ,AB=4,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標為(12).

1)寫出點A、B的坐標:

2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,則A′B′C′的三個頂點坐標分別是A′(,)、B′(,)、C′(,).

3△ABC的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明早晨跑步,他從自家向東跑了2千米到達小彬家,繼續(xù)向東跑了1.5千米到達小紅家,然后向西跑了4.5千米到達中心廣場,最后回到家.

(1)以小明家為原點,以向東的方向為正方向,用1 個單位長度表示1千米,你能在數(shù)軸上表示出中心廣場,小彬家和小紅家的位置嗎?

(2)小彬家距中心廣場多遠?

(3)小明一共跑了多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一次函數(shù)ykxb的圖象,以下說法中正確的是(  )

A. 直線與y軸的交點為(3,0) B. yx的增大而增大

C. 直線與兩坐標軸圍成的三角形面積是6 D. 一元一次方程kxb=0的解為x=2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點A(2,0)和B(t,0)(t≥2),與y軸交于點C,直線l:y=x+2t經(jīng)過點C,交x軸于點D,直線AE交拋物線于點E,且有∠CAE=∠CDO,作CF⊥AE于點F.

(1)求∠CDO的度數(shù);
(2)求出點F坐標的表達式(用含t的代數(shù)式表示);
(3)當SCOD﹣S四邊形COAF=7時,求拋物線解析式;
(4)當以B,C,O三點為頂點的三角形與△CEF相似時,請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖邊長為5的正方形OABC的頂點O在坐標原點處,A,C分別在x軸、y軸的正半軸上,EOA邊上的點(不與點A重合),EFCE,且與正方形外角平分線AG交于點P.

(1)求證:CE=EP.

(2)若點E的坐標為(3,0),y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,EF是平行四邊形ABCD對角線AC上兩點,AE=CF

證明(1△ABE≌△CDF

2BE∥DF

查看答案和解析>>

同步練習冊答案