【題目】在平面直角坐標(biāo)系中,點(diǎn)A(a ,2)是直線y=x上一點(diǎn),以A為圓心,2為半徑作⊙A,若P(x,y)是第一象限內(nèi)⊙A上任意一點(diǎn),則的最小值為(

A. 1 B. C. —1 D.

【答案】D

【解析】分析: 如圖所示,當(dāng)直線OP與圓A相切時(shí),連接AP,過PPHx軸,此時(shí)取得最小值,利用切線的性質(zhì)得到AP垂直于OP,在直角三角形AOP中,根據(jù)到角兩邊距離相等的點(diǎn)在角的平分線上確定出∠AOP=30°,tan30°的值,求出即可.

詳解: 如圖所示,當(dāng)直線OP與圓A相切時(shí),連接AP,過PPHx軸,此時(shí)取得最大值,

點(diǎn)A(a ,2)是直線y=x上一點(diǎn),

∴a=2,

A(2 ,2).

A為圓心,2為半徑作⊙A

Ay軸相切.

則當(dāng)直線OP與圓A相切時(shí), 取得最小值,

∵∠AOy=∠AOP=30°,

∴∠AOx=30°,

∴此時(shí)=tan30°=,

的最小值為

故選:D.

點(diǎn)睛:

此題考查了切線的性質(zhì),坐標(biāo)與圖形性質(zhì),以及銳角三角函數(shù)定義,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線OM上有三點(diǎn)A,B,C,滿足OA=20cm,AB=60cm,BC=10cm,動(dòng)點(diǎn)PO點(diǎn)出發(fā)沿OM方向以每秒1cm的速度勻速運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段CO上向點(diǎn)O勻速運(yùn)動(dòng)(點(diǎn)Q運(yùn)動(dòng)到點(diǎn)O時(shí),立即停止運(yùn)動(dòng)),點(diǎn)P,Q同時(shí)出發(fā).

(1)當(dāng)點(diǎn)P與點(diǎn)Q都同時(shí)運(yùn)動(dòng)到線段AB的中點(diǎn)時(shí),求點(diǎn)Q的運(yùn)動(dòng)速度;

(2)若點(diǎn)Q運(yùn)動(dòng)速度為每秒3cm時(shí),經(jīng)過多少時(shí)間P,Q兩點(diǎn)相距70cm;

(3)當(dāng)PA=2PB時(shí),點(diǎn)Q運(yùn)動(dòng)的位置恰好是線段AB的三等分,求點(diǎn)Q的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方法感悟:

1)如圖①,在矩形ABCD中,AB=4AD=6,AE=4,AF=2,是否在邊BC、CD上分別存在點(diǎn)G、H,使得四邊形EFGH的周長最?若存在,求出它周長的最小值;若不存在,請說明理由.

問題解決:

2)如圖②,有一矩形板材ABCDAB=3米,AD=6米,現(xiàn)想從此板材中裁出一個(gè)面積盡可能大的四邊形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,經(jīng)研究,只有當(dāng)點(diǎn)E、F、G分別在邊ADAB、BC上,且AFBF,并滿足點(diǎn)H在矩形ABCD內(nèi)部或邊上時(shí),才有可能裁出符合要求的部件,試問能否裁得符合要求的面積盡可能大的四邊形EFGH部件?若能,求出裁得的四邊形EFGH部件的面積,并寫出在以B為坐標(biāo)原點(diǎn),直線BCx軸,直線BAy軸的坐標(biāo)系中,點(diǎn)H的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點(diǎn)A對應(yīng)的數(shù)是﹣1,B點(diǎn)對應(yīng)的數(shù)是1,一只小蟲甲從點(diǎn)B出發(fā)沿著數(shù)軸的正方向以每秒4個(gè)單位的速度爬行至C點(diǎn),再立即返回到A點(diǎn),共用了4秒鐘.

1)求點(diǎn)C對應(yīng)的數(shù);

2)若小蟲甲返回到A點(diǎn)后再作如下運(yùn)動(dòng):第1次向右爬行2個(gè)單位,第2次向左爬行4個(gè)單位,第3次向右爬行6個(gè)單位,第4次向左爬行8個(gè)單位,依次規(guī)律爬下去,求它第10次爬行所停在點(diǎn)所對應(yīng)的數(shù);

3)若小蟲甲返回到A后繼續(xù)沿著數(shù)軸的負(fù)方向以每秒4個(gè)單位的速度爬行,這時(shí)另一小蟲乙從點(diǎn)C出發(fā)沿著數(shù)軸的負(fù)方向以每秒7個(gè)單位的速度爬行,設(shè)甲小蟲對應(yīng)的點(diǎn)為E點(diǎn),乙小蟲對應(yīng)的點(diǎn)為F點(diǎn),設(shè)點(diǎn)A、EF、B所對應(yīng)的數(shù)分別是xA、xExF、xB,當(dāng)運(yùn)動(dòng)時(shí)間t不超過1秒時(shí),請你結(jié)合數(shù)軸求出 |xAxE ||xExF |+ |xFxB |= .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對甲、乙兩種小麥各選用10塊面積相同的試驗(yàn)田進(jìn)行種植試驗(yàn),它們的平均畝產(chǎn)量分別是=610千克, =609千克,畝產(chǎn)量的方差分別是=29.6, =2.則關(guān)于兩種小麥推廣種植的合理決策是( )

A. 甲的平均畝產(chǎn)量較高,應(yīng)推廣甲

B. 甲、乙的平均畝產(chǎn)量相差不多,均可推廣

C. 甲的平均畝產(chǎn)量較高,且畝產(chǎn)量比較穩(wěn)定,應(yīng)推廣甲

D. 甲、乙的平均畝產(chǎn)量相差不多,但乙的畝產(chǎn)量比較穩(wěn)定,應(yīng)推廣乙

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AECF分別被直線EF、AC所截,已知,∠1=∠2AB平分∠EAC,CD平分∠ACG.將下列證明AB∥CD的過程及理由填寫完整.

證明:∵ ∠1="∠2" ( 已知 )

∴ AE∥

∴ ∠EAC =∠ ,(

AB平分∠EAC,CD平分∠ACG( 已知 )

∴∠ =∠EAC,∠4= ( 角平分線的定義 )

∴∠ =∠4(等量代換)

∴AB∥CD ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上A,B兩點(diǎn)對應(yīng)的數(shù)分別-48.有一動(dòng)點(diǎn)P從點(diǎn)A出發(fā)第一次向左運(yùn)動(dòng)1個(gè)單位長度;然后在新的位置第二次運(yùn)動(dòng),向右運(yùn)動(dòng)2個(gè)單位長度;在此位置第三次運(yùn)動(dòng),向左運(yùn)動(dòng)3個(gè)單位長度,…按照如此規(guī)律不斷地左右運(yùn)動(dòng)

1)當(dāng)運(yùn)動(dòng)到第2018次時(shí),求點(diǎn)P所對應(yīng)的有理數(shù).

2)點(diǎn)P會(huì)不會(huì)在某次運(yùn)動(dòng)時(shí)恰好到達(dá)某一個(gè)位置,使點(diǎn)P到點(diǎn)B的距離是點(diǎn)P到點(diǎn)A的距離的3倍?若可能請求出此時(shí)點(diǎn)P的位置,若不可能請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,AE⊥BC,垂足為點(diǎn)E,CE=CD,點(diǎn)FCE的中點(diǎn),點(diǎn)GCD上的一點(diǎn),連接DF,EG,AG,∠1=∠2.

(1)CF=2,AE=3,BE的長;

(2)求證:∠CEG=∠AGE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市綠化部門決定利用現(xiàn)有的不同種類花卉搭配園藝造型,擺放于城區(qū)主要大道的兩側(cè)AB兩種園藝造型均需用到杜鵑花,A種造型每個(gè)需用杜鵑花25盆,B種造型每個(gè)需用杜鵑花35盆,解答下列問題:

(1)已知人民大道兩側(cè)搭配的A、B兩種園藝造型共60個(gè),恰好用了1700盆杜鵑花,AB兩種園藝造型各搭配了多少個(gè)?

(2)如果搭配一個(gè)A種造型的成本W與造型個(gè)數(shù)的關(guān)系式為:W=100―x (0<x<50),搭配一個(gè)B種造型的成本為80現(xiàn)在觀海大道兩側(cè)也需搭配AB兩種園藝造型共50個(gè),要求每種園藝造型不得少于20個(gè),并且成本總額y(元)控制在4500元以內(nèi). 以上要求能否同時(shí)滿足?請你通過計(jì)算說明理由.

查看答案和解析>>

同步練習(xí)冊答案