(1)如圖1,三角形的三個內(nèi)角分別為15°,30°,135°,請把它分成兩個等腰三角形,并標出各個內(nèi)角的度數(shù);
(2)如圖2,三角形的三個內(nèi)角分別為36°,36°,108°,請把它分成三個等腰三角形,并標出各個內(nèi)角的度數(shù).
分析:(1)可以分成一個內(nèi)角是15°,15°150°和30°,30°,120°的兩個等腰三角形;
(2)可以分成兩個一個內(nèi)角是36°,36°108°和一個內(nèi)角是72°,72°和36°的等腰三角形.
解答:解:如圖所示:
點評:此題主要考查了作圖-應用與設計作圖,關鍵是掌握等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

11、如圖,直角三角形ABC中,點D是斜邊AC上的中點,BD=3cm,則AC=
6
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖:證明“三角形的內(nèi)角和是180°”
已知:
△ABC

求證:
∠A+∠B+∠C=180°

證明:過B點作直線EF∥AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直角三角形ABC的直角邊AB=6,以AB為直徑畫半圓,若陰影部分的面積S1-S2=
π
2
,則BC=(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•太原一模)如圖,在三角形紙片ABC中,BC=3,AB=5,∠BCA=90°,將其對折后點A落在BC的延長線上,折痕與AC交于點E,則CE的長是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我國古代數(shù)學的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個三角形的構造法則:兩腰上的數(shù)都是1,其余每個數(shù)均為其上方左右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個數(shù)1,2,1,恰好對應(a+b)2=a2+2ab+b2展開式中的系數(shù);第四行的四個數(shù)1,3,3,1,恰好對應著(a+b)3=a3+3a2b+3ab2+b2展開式中的系數(shù)等等.

(1)根據(jù)上面的規(guī)律,則(a+b)5的展開式=
a5+5a4b+10a3b2+10a2b3+5ab4+b5
a5+5a4b+10a3b2+10a2b3+5ab4+b5

(2)利用上面的規(guī)律計算:25-5×24+10×23-10×22+5×2-1=
1
1

查看答案和解析>>

同步練習冊答案