【題目】已知在中,的中點,,垂足為,交于點,且

1)求的度數(shù);

2)若,,求的長.

【答案】190°21.4

【解析】

1)連接CE,根據(jù)線段垂直平分線的性質(zhì)轉(zhuǎn)化線段BE到△AEC中,利用勾股定理的逆定理可求∠A度數(shù);

2)設(shè)AEx,則AC可用x表示,在RtABC中利用勾股定理得到關(guān)于x的方程求解AE值.

1)連接CE,∵DBC的中點,DEBC,

CEBE

BE2AE2AC2,

AE2AC2CE2

∴△AEC是直角三角形,∠A90°;

2)在RtBDE中,BE5

所以CEBE5

設(shè)AEx,則在RtAEC中,AC2CE2AE2

所以AC225x2

BD4,

BC2BD8

RtABC中,根據(jù)BC2AB2AC2,

64=(5x225x2,

解得x1.4

AE1.4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形OABC在平面直角坐標(biāo)系中的位置如圖所示.∠AOC=45°,OC= ,則點B的坐標(biāo)為(  ).

A.( ,1)
B.(1,
C.( ,1)
D.(1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,延長BC至點F,使CF=BC,連接CDEF

1)求證:DE=CF;

2)求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)圖象如圖所示,則下列結(jié)論:①;②;③關(guān)于的方程的解為;④當(dāng),.其中正確的有_______(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AEBC,F(xiàn)GBC,1=2,D=3+60°,CBD=70°.

(1)求證:ABCD;

(2)求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知有理數(shù)﹣31

1)在如圖所示的數(shù)軸上,分別用A,B表示出﹣3,1這兩個點;

2)若|m|2,數(shù)軸上表示m的點介于點AB之間;在點A右側(cè)且到點B距離為5的點表示的數(shù)為n.解關(guān)于x的不等式mx+4n,并把解集表示在如圖所示的數(shù)軸上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種牛奶,進(jìn)價為每箱24元,規(guī)定售價不低于進(jìn)價.現(xiàn)在的售價為每箱36元,每月可銷售60箱.市場調(diào)查發(fā)現(xiàn):若這種牛奶的售價每降價1元,則每月的銷量將增加10箱,設(shè)每箱牛奶降價x(x為正整數(shù)),每月的銷量為y箱.

1)寫出yx中間的函數(shù)關(guān)系式和自變量的取值范圍;

2)超市如何定價,才能使每月銷售牛奶的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠B90°,AB8 cm,AD12 cm,BC18 cm,點P從點A出發(fā),以1 cm/s的速度向點D運動;點Q從點C同時出發(fā),以2 cm/s的速度向點B運動.規(guī)定其中一個動點到達(dá)端點時,另一個動點也隨之停止運動.在這種情況下請你解決以下問題:

1)從運動開始,當(dāng)t取何值時,四邊形PQBA是矩形;

2)在整個運動過程中是否存在t值,使得四邊形PQCD是菱形?若存在,請求出t值;若不存在,請說明理由;

3)在整個運動過程中是否存在t,使得△DQC是等腰三角形?若存在,請求出t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某中學(xué)名學(xué)生家長對“學(xué)生帶手機(jī)上學(xué)”的態(tài)度,從中隨機(jī)調(diào)查了個家長,結(jié)果有個家長持反對態(tài)度,則下列說法正確的是(  )

A.調(diào)查方式是普查B.該校只有個家長持反對態(tài)度

C.該校約有的家長持反對態(tài)度D.樣本容量是

查看答案和解析>>

同步練習(xí)冊答案