【題目】1)如圖,在矩形中,.求:①矩形的面積;②對(duì)角線的長.

2)如圖,在菱形中,,,,為垂足.

①求證:

②若,求的大。

【答案】1;(2見詳解;②68°

【解析】

1直接利用矩形面積公式計(jì)算即可;

直接利用勾股定理即可求得BD長;

2由菱形∠B∠D,ABAD,再通過,∠AEB∠AFD,進(jìn)而即可得證;

利用∠B的度數(shù)可求得∠C的度數(shù),再利用四邊形的內(nèi)角和即可求得的大。

解:(1∵在矩形中,

∴矩形的面積;

∵在矩形中,∠A90°

∴在Rt△ABD中,

∴對(duì)角線的長為

2∵在菱形中,

∠B∠DABAD,

,

∠AEB∠AFD90°

∴在△ABE和△ADF中,

∴△ABE≌△ADFAAS),

∵在菱形中,ABCD,

∴∠C180°∠B112°,

,,

∠AEC∠AFC90°

∠EAF360°∠AEC∠AFC-∠C=360°-90°-90°112°68°,

的大小為68°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動(dòng)中,同學(xué)們積極參加體育鍛煉,小龍?jiān)谌kS機(jī)抽取一部分同學(xué)就我最喜愛的體育項(xiàng)目進(jìn)行了一次抽樣調(diào)查,下面是他通過收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息,解答以下問題:

(1)小龍共抽取______名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)在扇形統(tǒng)計(jì)圖中,其他部分對(duì)應(yīng)的圓心角的度數(shù)是_______;

(4)若全校共2100名學(xué)生,請(qǐng)你估算立定跳遠(yuǎn)部分的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC.

1)如圖1,如果∠BAD=30°,ADBC上的高,AD=AE,則∠EDC=_____度;

2)如圖2,如果∠BAD=40°ADBC上的高,AD=AE,則∠EDC=_______度;

3)思考:通過以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關(guān)系?請(qǐng)用式子表示:____________________.

4)如圖3,如果AD不是BC上的高,AD=AE,是否仍有上述關(guān)系?如有,請(qǐng)你寫出來,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)Aa,0),Bc,c),C0,c),且滿足,P點(diǎn)從A點(diǎn)出發(fā)沿x軸正方向以每秒2個(gè)單位長度的速度勻速移動(dòng),Q點(diǎn)從O點(diǎn)出發(fā)沿y軸負(fù)方向以每秒1個(gè)單位長度的速度勻速移動(dòng).

1)直接寫出點(diǎn)B的坐標(biāo),AOBC位置關(guān)系是;

2)當(dāng)P、Q分別是線段AO,OC上時(shí),連接PB,QB,使,求出點(diǎn)P的坐標(biāo);

3)在P、Q的運(yùn)動(dòng)過程中,當(dāng)∠CBQ=30°時(shí),請(qǐng)?zhí)骄俊?/span>OPQ和∠PQB的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將兩塊直角三角尺的頂點(diǎn)疊放在一起.

(1)若∠DCE=35°,求∠ACB的度數(shù);

(2)若∠ACB=140°,求∠DCE的度數(shù);

(3)猜想∠ACB與∠DCE的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等邊△ABC的兩個(gè)頂點(diǎn)坐標(biāo)為A-3,0),B3,0),則點(diǎn)的坐標(biāo)為____,△ABC的面積為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù) y=的圖象與一次函數(shù)ymxb的圖象交于兩點(diǎn)A1,3,Bn,1).

(1)求反比例函數(shù)與一次函數(shù)的函數(shù)關(guān)系式;

(2)根據(jù)圖象,回答當(dāng)一次函數(shù)的值大于反比例函數(shù)的值時(shí),x 的取值范圍為________;

(3) 連接AO、BO,則△ABO的面積是_________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.

(1)求點(diǎn)A的坐標(biāo);

(2)當(dāng)SABC=15時(shí),求該拋物線的表達(dá)式;

(3)在(2)的條件下,經(jīng)過點(diǎn)C的直線與拋物線的另一個(gè)交點(diǎn)為D.該拋物線在直線上方的部分與線段CD組成一個(gè)新函數(shù)的圖象。請(qǐng)結(jié)合圖象回答:若新函數(shù)的最小值大于﹣8,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案