【題目】如圖,在半徑為5的⊙O中,AB,CD是互相垂直的兩條弦,垂足為P,且AB=CD=8,OP的長為( )

A. 3 B. 4 C. 3 D. 4

【答案】C

【解析】

OMABM,ONCDN,連接OB,OD,首先利用勾股定理求得OM的長,然后判定四邊形OMPN是正方形,求得正方形的對角線的長即可求得OM的長.

OMABM,ONCDN,連接OBOD,

由垂徑定理,得
BM=AB=4,DN=CD=4

勾股定理得:OM=ON==3,

∵弦AB、CD互相垂直,

∴∠DPB=90°,

OMABM,ONCDN

∴∠OMP=ONP=90°

∴四邊形MONP是矩形,

OM=ON,

四邊形MONP是正方形,

OP==3,

故選C..

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點O是矩形ABCD的中心(對角線的交點),AB=4cm,AD=6cm.點M是邊AB上的一動點,過點OONOM,交BC于點N,設(shè)AM=x,ON=y,今天我們將根據(jù)學習函數(shù)的經(jīng)驗,研究函數(shù)值y隨自變量x的變化而變化的規(guī)律.

下面是某同學做的一部分研究結(jié)果,請你一起參與解答:

(1)自變量x的取值范圍是______

(2)通過計算,得到了xy的幾組值,如下表:

x/cm

0

0.5

1

1.5

2

2.5

3

3.5

4

y/cm

2.40

2.24

2.11

2.03

__

__

2.11

2.24

2.40

請你補全表格(說明:補全表格時相關(guān)數(shù)值保留兩位小數(shù),參考數(shù)據(jù):3.04,6.09)

(3)在如圖2所示的平面直角坐標系中,畫出該函數(shù)的大致圖象.

(4)根據(jù)圖象,請寫出該函數(shù)的一條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線形拱橋,當拱頂高離水面2m時,水面寬4m,水面下降2.5m,水面寬度增加(  )

A. 1 m B. 2 m C. 3 m D. 6 m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標系,拋物線可以用y=x2+bx+c表示,且拋物線上的點COB的水平距離為3 m,到地面OA的距離為m.

(1)求拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;

(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PCBA的延長線于點P,OF∥BCACACE,交PC于點F,連接AF

1)判斷AF⊙O的位置關(guān)系并說明理由;

2)若⊙O的半徑為4AF=3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=45° , BC=4,以AC為直角邊,點A為直角頂點向△ABC的外側(cè)作等腰直角三角形ACD,連接BD,則△DBC的面積為( ) .

A.8B.10C.4D.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ABC=60°,∠ACB=50°,延長CB至點D,使DB=BA,延長BC至點E,使CE=CA,連接AD,AE. 求∠DAE的度數(shù)

.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,已知AOB是等邊三角形,點A的坐標是(0,4),點B在第一象限,點P是x軸上的一個動點,連接AP,并把AOP繞著點A按逆時針方向旋轉(zhuǎn),使邊AO與AB重合,得到ABD.

(1)求直線AB的解析式;

(2)當點P運動到點(,0)時,求此時DP的長及點D的坐標;

(3)是否存在點P,使OPD的面積等于?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A、B⊙O上兩點,△OAB外角的平分線交⊙O于另一點C,CD⊥ABAB的延長線于D.

(1)求證:CD⊙O的切線;

(2)E的中點,F⊙O上一點,EFABG,若tan∠AFE=,BE=BG,EG=3,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案