試題分析:(1)由四邊形ABCD是矩形與折疊的性質(zhì),易證得△AOE≌△COF,即可得AE=CF,則可證得四邊形AFCE是平行四邊形,又由AC⊥EF,則可證得四邊形AFCE是菱形;
由已知可得:S△ABF=
AB•BF=24cm
2,則可得AB
2+BF
2=(AB+BF)
2-2AB•BF=(AB+BF)
2-2×48=AF
2=100(cm
2),則可求得AB+BF的值,繼而求得△ABF的周長.
過E作EP⊥AD交AC于P,則P就是所求的點,首先證明四邊形AFCE是菱形,然后根據(jù)題干條件證明△AOE∽△AEP,列出關(guān)系式.
試題解析:
(1)∵四邊形ABCD是矩形,
∴AD∥BC,∴∠EAO=∠FCO,
由折疊的性質(zhì)可得:OA=OC,AC⊥EF,
在△AOE和△COF中,
∵
,
∴△AOE≌△COF(ASA),
∴AE=CF,
∴四邊形AFCE是平行四邊形,
∵AC⊥EF,
∴四邊形AFCE是菱形;
(2)∵四邊形AFCE是菱形,
∴AF=AE=10cm,
∵四邊形ABCD是矩形,
∴∠B=90°,
∴S△ABF=
AB•BF=24cm
2,
∴AB•BF=48(cm
2),
∴AB
2+BF
2=(AB+BF
)2-2AB•BF=(AB+BF)
2-2×48=AF
2=100(cm
2),
∴AB+BF=14(cm)
∴△ABF的周長為:AB+BF+AF=14+10=24(cm).
(3)證明:過E作EP⊥AD交AC于P,則P就是所求的點.
當頂點A與C重合時,折痕EF垂直平分AC,
∴OA=OC,∠AOE=∠COF=90°,
∵在平行四邊形ABCD中,AD∥BC,
∴∠EAO=∠FCO,
∴△AOE≌△COF,
∴OE=OF
∴四邊形AFCE是菱形.
∴∠AOE=90°,又∠EAO=∠EAP,
由作法得∠AEP=90°,
∴△AOE∽△AEP,
∴
,則AE
2=A0•AP,
∵四邊形AFCE是菱形,
∴AO=
AC,
∴AE
2=
AC•AP,
∴2AE
2=AC•AP.