(2012•欽州)如圖所示,小明在自家樓頂上的點A處測量建在與小明家樓房同一水平線上鄰居的電梯的高度,測得電梯樓頂部B處的仰角為45°,底部C處的俯角為26°,已知小明家樓房的高度AD=15米,求電梯樓的高度BC(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)
分析:首先過點A作AE⊥BC于E,可得四邊形ADCE是矩形,即可得CE=AD=15米,然后分別在Rt△ACE中,AE=
CE
tan26°
與在Rt△ABE中,BE=AE•tan45°,即可求得BE的長,繼而求得電梯樓的高度.
解答:解:過點A作AE⊥BC于E,
∵AD⊥CD,BC⊥CD,
∴四邊形ADCE是矩形,
∴CE=AD=15米,
在Rt△ACE中,AE=
CE
tan26°
=
15
0.49
≈30.6(米),
在Rt△ABE中,BE=AE•tan45°=30.6(米),
∴BC=CE+BE=15+30.6=45.6(米).
答:電梯樓的高度BC為45.6米.
點評:此題考查了仰角與俯角的知識.此題難度適中,注意能借助仰角或俯角構(gòu)造直角三角形并解直角三角形是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•欽州)如圖甲,在平面直角坐標(biāo)系中,A、B的坐標(biāo)分別為(4,0)、(0,3),拋物線y=
3
4
x2+bx+c經(jīng)過點B,且對稱軸是直線x=-
5
2

(1)求拋物線對應(yīng)的函數(shù)解析式;
(2)將圖甲中△ABO沿x軸向左平移到△DCE(如圖乙),當(dāng)四邊形ABCD是菱形時,請說明點C和點D都在該拋物線上;
(3)在(2)中,若點M是拋物線上的一個動點(點M不與點C、D重合),經(jīng)過點M作MN∥y軸交直線CD于N,設(shè)點M的橫坐標(biāo)為t,MN的長度為l,求l與t之間的函數(shù)解析式,并求當(dāng)t為何值時,以M、N、C、E為頂點的四邊形是平行四邊形.(參考公式:拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(-
b
2a
,
4ac-b2
4a
),對稱軸是直線x=-
b
2a
.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•欽州)如圖,直線y=-
32
x+3與x軸、y軸分別交于A、B兩點,把△AOB繞點A旋轉(zhuǎn)90°后得到△AO′B′,則點B′的坐標(biāo)是
(-1,-2)或(5,2)
(-1,-2)或(5,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•欽州)如圖所示,把一張矩形紙片對折,折痕為AB,在把以AB的中點O為頂點的平角∠AOB三等分,沿平角的三等分線折疊,將折疊后的圖形剪出一個以O(shè)為頂點的等腰三角形,那么剪出的等腰三角形全部展開平鋪后得到的平面圖形一定是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•欽州)如圖是由4個小正方體組成的立體圖形,它的主視圖是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•欽州)如圖,在等腰梯形ABCD中,AB∥CD,AC⊥BC,∠B=60°,BC=8,則等腰梯形ABCD的周長為
40
40

查看答案和解析>>

同步練習(xí)冊答案