如圖,D為BC延長(zhǎng)線上一點(diǎn),CE∥AB,∠1=50°,∠ACB=75°,則∠B的度數(shù)是


  1. A.
    75°
  2. B.
    65°
  3. C.
    55°
  4. D.
    50°
C
分析:先求出∠BCE,再根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)列式進(jìn)行計(jì)算即可得解.
解答:∵∠1=50°,∠ACB=75°,
∴∠BCE=∠1+∠ACB=50°+75°=125°,
∵CE∥AB,
∴∠B=180°-∠BCE=180°-125°=55°.
故選C.
點(diǎn)評(píng):本題主要考查了平行線的性質(zhì),比較簡(jiǎn)單,熟記性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在平面直角坐標(biāo)系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),拋物線y=ax2+ax-2經(jīng)過點(diǎn)C.
(1)求拋物線的解析式;
(2)在拋物線(對(duì)稱軸的右側(cè))上是否存在兩點(diǎn)P、Q,使四邊形ABPQ是正方形?若存在,求點(diǎn)P、Q的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)如圖②,E為BC延長(zhǎng)線上一動(dòng)點(diǎn),過A、B、E三點(diǎn)作⊙O′,連接AE,在⊙O′上另有一點(diǎn)F,且AF=AE,AF交BC于點(diǎn)G,連接BF.下列結(jié)論:①BE+BF的值不變;②
BF
AF
=
BG
AG
,其中有且只有一個(gè)成立,請(qǐng)你判斷哪一個(gè)結(jié)論成立,并證明成立的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•牡丹江)如圖①,△ABC中.AB=AC,P為底邊BC上一點(diǎn),PE⊥AB,PF⊥AC,CH⊥AB,垂足分別為E、F、H.易證PE+PF=CH.證明過程如下:
如圖①,連接AP.
∵PE⊥AB,PF⊥AC,CH⊥AB,
∴S△ABP=
1
2
AB•PE,S△ACP=
1
2
AC•PF,S△ABC=
1
2
AB•CH.
又∵S△ABP+S△ACP=S△ABC,
1
2
AB•PE+
1
2
AC•PF=
1
2
AB•CH.
∵AB=AC,
∴PE+PF=CH.
(1)如圖②,P為BC延長(zhǎng)線上的點(diǎn)時(shí),其它條件不變,PE、PF、CH又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,并加以證明:
(2)填空:若∠A=30°,△ABC的面積為49,點(diǎn)P在直線BC上,且P到直線AC的距離為PF,當(dāng)PF=3時(shí),則AB邊上的高CH=
7
7
.點(diǎn)P到AB邊的距離PE=
4或10
4或10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•重慶模擬)如圖,D為BC延長(zhǎng)線上一點(diǎn),CE∥AB,∠1=50°,∠ACB=75°,則∠B的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第26章《二次函數(shù)》中考題集(38):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

如圖①,在平面直角坐標(biāo)系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),拋物線y=ax2+ax-2經(jīng)過點(diǎn)C.
(1)求拋物線的解析式;
(2)在拋物線(對(duì)稱軸的右側(cè))上是否存在兩點(diǎn)P、Q,使四邊形ABPQ是正方形?若存在,求點(diǎn)P、Q的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)如圖②,E為BC延長(zhǎng)線上一動(dòng)點(diǎn),過A、B、E三點(diǎn)作⊙O′,連接AE,在⊙O′上另有一點(diǎn)F,且AF=AE,AF交BC于點(diǎn)G,連接BF.下列結(jié)論:①BE+BF的值不變;②,其中有且只有一個(gè)成立,請(qǐng)你判斷哪一個(gè)結(jié)論成立,并證明成立的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省無錫市宜興外國(guó)語學(xué)校中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖①,在平面直角坐標(biāo)系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),拋物線y=ax2+ax-2經(jīng)過點(diǎn)C.
(1)求拋物線的解析式;
(2)在拋物線(對(duì)稱軸的右側(cè))上是否存在兩點(diǎn)P、Q,使四邊形ABPQ是正方形?若存在,求點(diǎn)P、Q的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)如圖②,E為BC延長(zhǎng)線上一動(dòng)點(diǎn),過A、B、E三點(diǎn)作⊙O′,連接AE,在⊙O′上另有一點(diǎn)F,且AF=AE,AF交BC于點(diǎn)G,連接BF.下列結(jié)論:①BE+BF的值不變;②,其中有且只有一個(gè)成立,請(qǐng)你判斷哪一個(gè)結(jié)論成立,并證明成立的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案