已知反比例函數(shù)(k為常數(shù),k≠0)的圖象經(jīng)過點A(2,3).
(1)求這個函數(shù)的解析式;
(2)判斷點B(-1,6),C(3,2)是否在這個函數(shù)的圖象上,并說明理由;
(3)當-3<x<-1時,求y的取值范圍.
解:(1)∵反比例函數(shù)(k為常數(shù),k≠0)的圖象經(jīng)過點A(2,3),
∴把點A的坐標代入解析式,得,解得,k=6。
∴這個函數(shù)的解析式為:。
(2)∵反比例函數(shù)解析式,∴6=xy。
分別把點B、C的坐標代入,得
(-1)×6=-6≠6,則點B不在該函數(shù)圖象上;
3×2=6,則點C中該函數(shù)圖象上。
(3)∵k>0,∴當x<0時,y隨x的增大而減小。
∵當x=-3時,y=-2,當x=-1時,y=-6,
∴當-3<x<-1時,-6<y<-2。
解析試題分析:(1)把點A的坐標代入已知函數(shù)解析式,通過方程即可求得k的值。
(2)只要把點B、C的坐標分別代入函數(shù)解析式,橫縱坐標坐標之積等于6時,即該點在函數(shù)圖象上。
(3)根據(jù)反比例函數(shù)圖象的增減性解答問題。
科目:初中數(shù)學 來源: 題型:解答題
已知:如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于點
(1)試確定上述正比例函數(shù)和反比例函數(shù)的表達式;
(2)根據(jù)圖象回答,在第一象限內,當取何值時,反比例函數(shù)的值大于正比例函數(shù)的值?
(3)M(m,n)是反比例函數(shù)圖像上的一動點,其中0<m<3,過M作直線MB‖x軸交y軸于點B。過點A作直線AC∥y軸交于點C,交直線MB于點D,當四邊形OADM的面積為6時,請判斷線段BM與DM的大小關系,并說明理由;
(4)探索:x軸上是否存在點P,使ΔOAP是等腰三角形?若存在,求出點P的坐標,若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
定義:如圖,若雙曲線與它的其中一條對稱軸相交于兩點A,B,則線段AB的長稱為雙曲線的對徑.
(1)求雙曲線的對徑;
(2)若某雙曲線對徑是.求k的值;
(3)仿照上述定義,請你定義雙曲線的對徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,一次函數(shù) 與反比例函數(shù)的圖象交于點 和,與軸交于點.(1) , ;
(2)根據(jù)函數(shù)圖象可知,當 時,的取值范圍是 ;
(3)過點作軸于點,點是反比例函數(shù)在第一象限的圖象上一點,設直線與線段交于點,當時,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,一次函數(shù)y1=x+1的圖像與反比例函數(shù)(k為常數(shù),且k≠0)的圖像都經(jīng)過點A(m,2).
(1)求點A的坐標及反比例函數(shù)的表達式;
(2)結合圖像直接比較:當時,與的大小。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,一次函數(shù)(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標為(n,6),點C的坐標為(﹣2,0),且.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點B的坐標;
(3)在x軸上求點E,使△ACE為直角三角形.(直接寫出點E的坐標)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知:如圖,在平面直角坐標系xOy中,直線AB與x軸交于點A(﹣2,0),與反比例函數(shù)在第一象限內的圖象的交于點B(2,n),連接BO,若S△AOB=4.
(1)求該反比例函數(shù)的解析式和直線AB的解析式;
(2)若直線AB與y軸的交點為C,求△OCB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
(2013年四川瀘州8分)如圖,已知函數(shù)與反比例函數(shù)(x>0)的圖象交于點A.將的圖象向下平移6個單位后與雙曲線交于點B,與x軸交于點C.
(1)求點C的坐標;
(2)若,求反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
要把一個正方體分割成8個小正方體,至少需要切3刀,因為這8個小正方體都只有三個面現(xiàn)成的,其它三個面必須用刀切3次才能切出來,那么,要把一個正方體分割成27個小正方體,至少需要要刀切 次,分割成64個小正方體,至少需要用刀切 次。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com