【題目】如圖①,在長(zhǎng)方形ABCD中,AB10 cm,BC8 cm,點(diǎn)PA出發(fā),沿AB、C、D路線運(yùn)動(dòng),到D停止,點(diǎn)P的速度為每秒1 cm,a秒時(shí)點(diǎn)P的速度變?yōu)槊棵?/span>bcm,圖②是點(diǎn)P出發(fā)x秒后,APD的面積S1cm2)與y(秒)的函數(shù)關(guān)系圖象:

1)根據(jù)圖②中提供的信息,a  ,b  c 

2)點(diǎn)P出發(fā)后幾秒,APD的面積S1是長(zhǎng)方形ABCD面積的四分之一?

【答案】1a6,b2c17;(2)點(diǎn)P出發(fā)后5秒或14.5秒,△APD的面積S1是長(zhǎng)方形ABCD面積的四分之一.

【解析】

1)可根據(jù)函數(shù)圖像分段利用三角形的面積公式底乘以高,底為8cm一定,高隨時(shí)間的變化而變化,解得a,b,c為幾段時(shí)間的和;

2)可分兩種情況計(jì)算可得,當(dāng)PAB中點(diǎn)和CD中點(diǎn)時(shí),APD的面積S1是長(zhǎng)方形ABCD面積的四分之一.

解:(1)依函數(shù)圖象可知:

當(dāng)0xa時(shí),S1×8a24 即:a6

當(dāng)ax8時(shí),S1×8×[6×1+b86]40 即:b2

當(dāng)8xc時(shí),

①當(dāng)點(diǎn)PB點(diǎn)運(yùn)動(dòng)到C點(diǎn)三角形APD的面積S1×8×1040cm2)一定,所需時(shí)間是:8÷24(秒),

②當(dāng)點(diǎn)PC點(diǎn)運(yùn)動(dòng)到D點(diǎn):所需時(shí)間是:10÷25(秒),

所以c8+4+517(秒).

故答案為:a6,b2,c17

2)∵長(zhǎng)方形ABCD面積是:10×880cm2

∴當(dāng)0xa時(shí),×8x80× 即:x5;

當(dāng)12x17時(shí),×8×217x)=80× 即:x14.5

∴點(diǎn)P出發(fā)后5秒或145秒,△APD的面積S1是長(zhǎng)方形ABCD面積的四分之一.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了了解初中各年級(jí)學(xué)生每天的平均睡眠時(shí)間(單位:h,精確到1 h),抽樣調(diào)查了部分學(xué)生,并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)圖中提供的信息,回答下列問題:

(1)求出扇形統(tǒng)計(jì)圖中百分?jǐn)?shù)的值為_______,所抽查的學(xué)生人數(shù)為______;

(2)求出平均睡眠時(shí)間為8小時(shí)的人數(shù),并補(bǔ)全條形圖;

(3)求出這部分學(xué)生的平均睡眠時(shí)間的平均數(shù);

(4)如果該校共有學(xué)生1200名,請(qǐng)你估計(jì)睡眠不足(少于8小時(shí))的學(xué)生數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形和四邊形為正方形,點(diǎn)在線段上,點(diǎn)在同一直線上,連接,并延長(zhǎng)于點(diǎn)

1)求證:

2)若,求線段的長(zhǎng).

3)設(shè),,當(dāng)點(diǎn)H是線段GC的中點(diǎn)時(shí),則滿足什么樣的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“愛我中華”中學(xué)生演講比賽中,五位評(píng)委分別給甲、乙兩位選手的評(píng)分如下:甲:87,98,8;乙:79,6,9,9,則下列說(shuō)法中錯(cuò)誤的是( 。

A. 甲得分的方差比乙得分的方差小B. 甲得分的眾數(shù)是8,乙得分的眾數(shù)是9

C. 甲、乙得分的平均數(shù)都是8D. 甲得分的中位數(shù)是9,乙得分的中位數(shù)是6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市啟動(dòng)了第二屆美麗港城美在閱讀全民閱讀活動(dòng).為了解市民每天的閱讀時(shí)間情況,隨機(jī)抽取了部分市民進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制如下尚不完整的頻數(shù)分布表:

(1) 補(bǔ)全表格;

(2) 將每天閱讀時(shí)間不低于 的市民稱為閱讀愛好者.若我市約有 萬(wàn)人,請(qǐng)估計(jì)我市能稱為閱讀愛好者的市民約有多少萬(wàn)人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在平面直角坐標(biāo)系中,直線lx軸交于點(diǎn)A1,如圖所示依次作正方形A1B1C1O

正方形A2B2C2C1、…、正方形,使得點(diǎn)A1A2、A3、…在直線l上,點(diǎn)C1、C2C3、…

y軸正半軸上,則點(diǎn)的坐標(biāo)是_______________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為滿足市場(chǎng)需求,某超市在五月初五端午節(jié)來(lái)臨前夕,購(gòu)進(jìn)一種品牌粽子,每盒進(jìn)價(jià)是40元.超市規(guī)定每盒售價(jià)不得少于45元.根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn);當(dāng)售價(jià)定為每盒45元時(shí),每天可以賣出700盒,每盒售價(jià)每提高1元,每天要少賣出20盒.

1)試求出每天的銷售量y(盒)與每盒售價(jià)x(元)之間的函數(shù)關(guān)系式;

2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷售的利潤(rùn)P(元)最大?最大利潤(rùn)是多少?

3)為穩(wěn)定物價(jià),有關(guān)管理部門限定:這種粽子的每盒售價(jià)不得高于58元.如果超市想要每天獲得不低于6000元的利潤(rùn),那么超市每天至少銷售粽子多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一直角坐標(biāo)系中,拋物線y=ax2﹣2x﹣3與拋物線y=x2+mx+n關(guān)于y軸對(duì)稱,C2與x軸交于A、B兩點(diǎn),其中點(diǎn)A在點(diǎn)B的左側(cè).

(1)求拋物線C1,C2的函數(shù)表達(dá)式;

(2)求A、B兩點(diǎn)的坐標(biāo);

(3)在拋物線C1上是否存在一點(diǎn)P,在拋物線C2上是否存在一點(diǎn)Q,使得以AB為邊,且以A、B、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出P、Q兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:O是坐標(biāo)原點(diǎn),P(m,n(m0)是函數(shù)y (k0)上的點(diǎn),過(guò)點(diǎn)P作直線PAOP于P,直線PAx軸的正半軸交于點(diǎn)A(a,0(am). 設(shè)OPA的面積為s,且s=1.

(1)當(dāng)n=1時(shí),求點(diǎn)A的坐標(biāo);

(2)若OP=AP,求k的值

查看答案和解析>>

同步練習(xí)冊(cè)答案