【題目】若二次函數(shù)yx22x+k的部分圖象如圖所示,則關(guān)于x的一元二次方程x22x+k0的解一個為x13,則方程x22x+k0另一個解x2_____

【答案】-1

【解析】

利用拋物線與x軸的交點問題,利用關(guān)于x的一元二次方程x2-2x+k=0的解一個為x1=3得到二次函數(shù)y=x2-2x+kx軸的一個交點坐標(biāo)為(30),然后利用拋物線的對稱性得到二次函數(shù)y=x2-2x+kx軸的另一個交點坐標(biāo)為(-1,0),從而得到方程x2-2x+k=0另一個解.

解:∵關(guān)于x的一元二次方程x22x+k0的解一個為x13

∴二次函數(shù)yx22x+kx軸的一個交點坐標(biāo)為(3,0),

∵拋物線的對稱軸為直線x1,

∴二次函數(shù)yx22x+kx軸的另一個交點坐標(biāo)為(﹣1,0),

∴方程x22x+k0另一個解x2=﹣1

故答案為﹣1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°ACBC,DAB邊上一點(點DA,B不重合),連結(jié)CD,將線段CD繞點C按逆時針方向旋轉(zhuǎn)90°得到線段CE,連結(jié)BE

1)求證:ACD≌△BCE;

2)當(dāng)∠125°時,求∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于點、點,在軸上存在一點,使的周長最小,則點的坐標(biāo)是____________________________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某消防隊在一居民樓前進行演習(xí),消防員利用云梯成功救出點B處的求救者后,又發(fā)現(xiàn)點B正上方點C處還有一名求救者.在消防車上點A處測得點B和點C的仰角分別是45°65°,點A距地面2.5米,點B距地面10.5.為救出點C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解學(xué)生的課外閱讀情況,隨機抽查部分學(xué)生,并對其寒假期間的課外閱讀量進行統(tǒng)計分析,繪制成如圖所示但不完整的統(tǒng)計圖.已知抽查的學(xué)生在寒假期間閱讀量為2本的人數(shù)占抽查總?cè)藬?shù)的,根據(jù)所給出信息,解答下列問題:

1)求被抽查學(xué)生人數(shù);

2)將條形統(tǒng)計圖補充完整;

3)若規(guī)定:假期閱讀3本及3本以上課外書者為完成假期作業(yè),據(jù)此估計該校1800名學(xué)生中,完成假期作業(yè)的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線)的頂點是,拋物線軸交于點,與直線交于點.過點軸于點,平移拋物線使其經(jīng)過點、得到拋物線),拋物線軸的另一個交點為.

(1)若,,求點的坐標(biāo)

(2)若,求的值.

(3)若四邊形為矩形,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過點OOFBCF,若BD=8cm,AE=2cm,

(1)求⊙O的半徑;

(2)O到弦BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,AB的直徑,C上一點,連接AC,過點C作直線D),點EDB上任意一點(點D、B除外),直線CE于點F.連接AF與直線CD交于點G.

1)求證:

2)若點EAD(點A除外)上任意一點,上述結(jié)論是否仍然成立?若成立,請畫出圖形并給予證明;若不成立,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館有客房間供游客居住,當(dāng)每間客房的定價為每天元時,客房恰好全部住滿;如果每間客房每天的定價每增加元,就會減少間客房出租.設(shè)每間客房每天的定價增加元,賓館出租的客房為間.求:

關(guān)于的函數(shù)關(guān)系式;

如果某天賓館客房收入元,那么這天每間客房的價格是多少元?

查看答案和解析>>

同步練習(xí)冊答案