已知:以原點O為圓心,5為半徑的半圓與y軸交于A、G兩點,AB與半圓相切于點A,點B的坐標為(3,)。(如圖1)過半圓上的點C作y軸的垂線,垂足為D.Rt△DOC的面積為。
(1)求點C的坐標;
(2)①命題“如圖2,以y軸為對稱軸的等腰梯形MNPQ與M1N1P1Q1的上底和下底都分別在同一條直線上,NP∥MQ,PQ∥P1Q1,且NP>MQ.設拋物線y=a0x2+h0過點P、Q,拋物線y=a1x2+h1過點P1、Q1,則h0>h1”是真命題.請你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)為例進行驗證;
②當圖1中的線段BC在第一象限時,作線段BC關于y軸對稱的線段FE,連接BF、CE,點T是線段BF上的動點(如圖3);設K是過T、B、C三點的拋物線y=ax2+bx+c的頂點,求K的縱坐標yK的取值范圍.
(1)C(4,3)(2分)和C(4,-3)
(2)①過點P(4,3)、Q(3,5)的拋物線
即為,得=。
過P(p+1,3)、Q(p,5)的拋物線
∵MQ>M1Q1,其中MQ=6,可知0≤p<3;∴7p+3>0,2p+1>0,3-p>0,
因而得到h0-h1>0,證得h0>h1.或者說明2p+1>0,-14p2+36p+18在0≤p<3時總是大于0,得到h0-h1>0.
②顯然拋物線y=ax2+bx+c的開口方向向下,a<0.
當T運動到B點時,這時B、T、K三點重合即B為拋物線的頂點,∴yK≥5;
將過點T、B、C三點的拋物線y=ax2+bx+c沿x軸平移,使其對稱軸為y軸,這時yK不變.
則由上述①的結論,當T在FB上運動時,過F(-3,5)、B(3,5)、C(4,3)三點的拋物線的頂點為最高點,yK≤∴5≤yK≤
解析
科目:初中數(shù)學 來源: 題型:
3 | 8 |
查看答案和解析>>
科目:初中數(shù)學 來源:第2章《二次函數(shù)》中考題集(49):2.8 二次函數(shù)的應用(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(45):23.5 二次函數(shù)的應用(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:2012年浙江省杭州市西湖區(qū)中考數(shù)學模擬試卷(七)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com