已知,如圖1,過(guò)點(diǎn)E(0,-1)作平行于x軸的直線l,拋物線y=
1
4
x2上的兩點(diǎn)A、B的橫坐標(biāo)分別為-1和4,直線AB交y軸于點(diǎn)F,過(guò)點(diǎn)A、B分別作直線l的垂線,垂足分別為點(diǎn)C、D,連接CF、DF.
(1)求點(diǎn)A、B、F的坐標(biāo);
(2)求證:CF⊥DF;
(3)點(diǎn)P是拋物線y=
1
4
x2對(duì)稱軸右側(cè)圖象上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作PQ⊥PO交x軸于點(diǎn)Q,是否存在點(diǎn)P使得△OPQ與△CDF相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(1)方法一:如圖1,當(dāng)x=-1時(shí),y=
1
4
;當(dāng)x=4時(shí),y=4
∴A(-1,
1
4
)(1分)
B(4,4)(2分)
設(shè)直線AB的解析式為y=kx+b(3分)
-k+b=
1
4
4k+b=4

解得
k=
3
4
b=1

∴直線AB的解析式為y=
3
4
x+1(4分)
當(dāng)x=0時(shí),y=1∴F(0,1)(5分)
方法二:求A、B兩點(diǎn)坐標(biāo)同方法一,如圖2,作FG⊥BD,AH⊥BD,垂足分別為G、H,交y軸于點(diǎn)N,則四邊FOMG和四邊形NOMH均為矩形,設(shè)FO=x(3分)
∵△BGF△BHA
BG
BH
=
FG
AH

4-x
4-
1
4
=
4
5
(4分)
解得x=1
∴F(0,1)(5分)

(2)證明:方法一:在Rt△CEF中,CE=1,EF=2,
根據(jù)勾股定理得:CF2=CE2+EF2=12+22=5,
∴CF=
5
(6分)
在Rt△DEF中,DE=4,EF=2
∴DF2=DE2+EF2=42+22=20
∴DF=2
5

由(1)得C(-1,-1),D(4,-1)
∴CD=5
∴CD2=52=25
∴CF2+DF2=CD2(7分)
∴∠CFD=90°
∴CF⊥DF(8分)
方法二:由(1)知AF=
1+(
3
4
)
2
=
5
4
,AC=
5
4

∴AF=AC(6分)
同理:BF=BD
∴∠ACF=∠AFC
∵ACEF
∴∠ACF=∠CFO
∴∠AFC=∠CFO(7分)
同理:∠BFD=∠OFD
∴∠CFD=∠OFC+∠OFD=90°
即CF⊥DF(8分)

(3)存在.
如圖3,作PM⊥x軸,垂足為點(diǎn)M(9分)
又∵PQ⊥OP
∴Rt△OPMRt△OQP
PM
PQ
=
OM
OP
PQ
OP
=
PM
OM
(10分)
設(shè)P(x,
1
4
x2)(x>0),
則PM=
1
4
x2,OM=x
①當(dāng)Rt△QPORt△CFD時(shí),
PQ
OP
=
CF
DF
=
5
2
5
=
1
2
(11分)
PM
OM
=
1
4
x2
x
=
1
2

解得x=2∴P1(2,1)(12分)
②當(dāng)Rt△OPQRt△CFD時(shí),
PQ
OP
=
DF
CF
=
2
5
5
=2(13分)
PM
OM
=
1
4
x2
x
=2
解得x=8
∴P2(8,16)
綜上,存在點(diǎn)P1(2,1)、P2(8,16)使得△OPQ與△CDF相似.(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,拋物線y=ax2+bx+c經(jīng)過(guò)原點(diǎn)O,與x軸交于另一點(diǎn)N,直線y=kx+b1與兩坐標(biāo)軸分別交于A、D兩點(diǎn),與拋物線交于B(1,3)、C(2,2)兩點(diǎn).
(1)求直線與拋物線的解析式;
(2)若拋物線在x軸上方的部分有一動(dòng)點(diǎn)P(x,y),求△PON的面積最大值;
(3)若動(dòng)點(diǎn)P保持(2)中的運(yùn)動(dòng)路線,問(wèn)是否存在點(diǎn)P,使得△POA的面積等于△POD面積的
1
9
?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(0,3)、B(4,3)、C(1,0)、
(1)填空:拋物線的對(duì)稱軸為直線x=______,拋物線與x軸的另一個(gè)交點(diǎn)D的坐標(biāo)為_(kāi)_____;
(2)求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)y=(x-m)2-4m2(m>0)的圖象與x軸交于A、B兩點(diǎn).
(1)寫出A、B兩點(diǎn)的坐標(biāo)(坐標(biāo)用m表示);
(2)若二次函數(shù)圖象的頂點(diǎn)P在以AB為直徑的圓上,求二次函數(shù)的解析式;
(3)在(2)的基礎(chǔ)上,設(shè)以AB為直徑的⊙M與y軸交于C、D兩點(diǎn),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線的圖象如圖,則它的函數(shù)表達(dá)式是______.當(dāng)x______時(shí),y>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y=ax2+4ax+t(a>0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)E,點(diǎn)B的坐標(biāo)為(-1,0).
(1)求拋物線的對(duì)稱軸及點(diǎn)A的坐標(biāo);
(2)過(guò)點(diǎn)C作x軸的平行線交拋物線的對(duì)稱軸于點(diǎn)P,你能判斷四邊形ABCP是什么四邊形?并證明你的結(jié)論;
(3)連接CA與拋物線的對(duì)稱軸交于點(diǎn)D,當(dāng)∠APD=∠ACP時(shí),求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

武漢銀河影院對(duì)去年賀歲片《非誠(chéng)勿攏》的售票情況進(jìn)行調(diào)查:若票價(jià)定為20元/張,則每場(chǎng)可賣電影票400張,若單價(jià)每漲1元,每場(chǎng)就少售出8張,設(shè)每張票漲價(jià)x元(x為正整數(shù)).
(1)求每場(chǎng)的收入y與x的函數(shù)關(guān)系式;
(2)設(shè)某場(chǎng)的收入為9000元,此收入是否是最大收入?請(qǐng)說(shuō)明理由;
(3)請(qǐng)借助圖象分析,售價(jià)在什么范圍內(nèi)每趟的總收入不低于8000元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商店將進(jìn)價(jià)為100元的某商品按120元的價(jià)格出售,可賣出300個(gè);若商店在120元的基礎(chǔ)上每漲價(jià)1元,就要少賣10個(gè),而每降價(jià)1元,就可多賣30個(gè).
(1)求所獲利潤(rùn)y(元)與售價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)為獲利最大,商店應(yīng)將價(jià)格定為多少元?
(3)為了讓利顧客,在利潤(rùn)相同的情況下,請(qǐng)為商店選擇正確的出售方式,并求出此時(shí)的售價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,用50m長(zhǎng)的籬笆圍成中間有一道籬笆墻的養(yǎng)殖場(chǎng),設(shè)它的長(zhǎng)為xm,養(yǎng)殖場(chǎng)的一邊靠墻.
(1)要使養(yǎng)殖場(chǎng)的面積最大,養(yǎng)殖場(chǎng)的長(zhǎng)應(yīng)為多少米?
(2)若中間有n(n是大于1的整數(shù))道籬笆隔墻,要使養(yǎng)殖場(chǎng)面積最大,養(yǎng)殖場(chǎng)的長(zhǎng)應(yīng)為多少米?比較(1)和(2),你能得出什么結(jié)論?

查看答案和解析>>

同步練習(xí)冊(cè)答案