已知函數(shù)y=
xx+2
,則自變量x的取值范圍是
 
分析:根據(jù)分式的意義,分母不等于0,可以求出x的范圍.
解答:解:根據(jù)題意得:x+2≠0,
解得:x≠-2.
故答案為x≠-2.
點(diǎn)評(píng):本題考查了函數(shù)自變量的取值范圍問(wèn)題,函數(shù)自變量的范圍一般從三個(gè)方面考慮:
(1)當(dāng)函數(shù)表達(dá)式是整式時(shí),自變量可取全體實(shí)數(shù);
(2)當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母不能為0;
(3)當(dāng)函數(shù)表達(dá)式是二次根式時(shí),被開(kāi)方數(shù)非負(fù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2-xx
,如果f(a)=0,那么a=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•新華區(qū)一模)我們知道:根據(jù)二次函數(shù)的圖象,可以直接確定二次函數(shù)的最大(。┲;根據(jù)“兩點(diǎn)之間,線(xiàn)段最短”,并運(yùn)用軸對(duì)稱(chēng)的性質(zhì),可以在一條直線(xiàn)上找到一點(diǎn),使得此點(diǎn)到這條直線(xiàn)同側(cè)兩定點(diǎn)之間的距離之和最短.
這種數(shù)形結(jié)合的思想方法,非常有利于解決一些數(shù)學(xué)和實(shí)際問(wèn)題中的最大(小)值問(wèn)題.請(qǐng)你嘗試解決一下問(wèn)題:
(1)在圖1中,拋物線(xiàn)所對(duì)應(yīng)的二次函數(shù)的最大值是
4
4
;
(2)在圖2中,相距3km的A、B兩鎮(zhèn)位于河岸(近似看做直線(xiàn)l)的同側(cè),且到河岸的距離AC=1千米,BD=2千米,現(xiàn)要在岸邊建一座水塔,分別直接給兩鎮(zhèn)送水,為使所用水管的長(zhǎng)度最短,請(qǐng)你:
①作圖確定水塔的位置;
②求出所需水管的長(zhǎng)度(結(jié)果用準(zhǔn)確值表示)
(3)已知x+y=6,求
x2+9
+
y2+25
的最小值;
此問(wèn)題可以通過(guò)數(shù)形結(jié)合的方法加以解決,具體步驟如下:
①如圖3中,作線(xiàn)段AB=6,分別過(guò)點(diǎn)A、B,作CA⊥AB,DB⊥AB,使得CA=
3
3
,DB=
5
5
;
②在AB上取一點(diǎn)P,可設(shè)AP=
x
x
,BP=
y
y

x2+9
+
y2+25
的最小值即為線(xiàn)段
PC
PC
和線(xiàn)段
PD
PD
長(zhǎng)度之和的最小值,最小值為
10
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知y=
1-x
x
,當(dāng)x
 
時(shí),函數(shù)有意義?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:奉賢區(qū)三模 題型:填空題

已知函數(shù)f(x)=
x2-x
x
,如果f(a)=0,那么a=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案