學(xué)校為了獎(jiǎng)勵(lì)初三優(yōu)秀畢業(yè)生,計(jì)劃購(gòu)買(mǎi)一批平板電腦和一批學(xué)習(xí)機(jī),經(jīng)投標(biāo),購(gòu)買(mǎi)1臺(tái)平板電腦比購(gòu)買(mǎi)3臺(tái)學(xué)習(xí)機(jī)多600元,購(gòu)買(mǎi)2臺(tái)平板電腦和3臺(tái)學(xué)習(xí)機(jī)共需8400元.
(1)求購(gòu)買(mǎi)1臺(tái)平板電腦和1臺(tái)學(xué)習(xí)機(jī)各需多少元?
(2)學(xué)校根據(jù)實(shí)際情況,決定購(gòu)買(mǎi)平板電腦和學(xué)習(xí)機(jī)共100臺(tái),要求購(gòu)買(mǎi)的總費(fèi)用不超過(guò)168000元,且購(gòu)買(mǎi)學(xué)習(xí)機(jī)的臺(tái)數(shù)不超過(guò)購(gòu)買(mǎi)平板電腦臺(tái)數(shù)的1.7倍.請(qǐng)問(wèn)有哪幾種購(gòu)買(mǎi)方案?哪種方案最省錢(qián)?
解:(1)設(shè)購(gòu)買(mǎi)1臺(tái)平板電腦和1臺(tái)學(xué)習(xí)機(jī)各需x元,y元,
根據(jù)題意得:,
解得:,
則購(gòu)買(mǎi)1臺(tái)平板電腦和1臺(tái)學(xué)習(xí)機(jī)各需3000元,800元;
(2)設(shè)購(gòu)買(mǎi)平板電腦x臺(tái),學(xué)習(xí)機(jī)(100﹣x)臺(tái),
根據(jù)題意得:,
解得:37.03≤x≤40,
正整數(shù)x的值為38,39,40,
當(dāng)x=38時(shí),y=62;x=39時(shí),y=61;x=40時(shí),y=60,
方案1:購(gòu)買(mǎi)平板電腦38臺(tái),學(xué)習(xí)機(jī)62臺(tái),費(fèi)用為114000+49600=163600(元);
方案2:購(gòu)買(mǎi)平板電腦39臺(tái),學(xué)習(xí)機(jī)61臺(tái),費(fèi)用為117000+48800=165800(元);
方案3:購(gòu)買(mǎi)平板電腦40臺(tái),學(xué)習(xí)機(jī)60臺(tái),費(fèi)用為120000+48000=168000(元),
則方案1最省錢(qián).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江蘇省無(wú)錫市九年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分8分)如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)D,點(diǎn)O是AB上一點(diǎn),⊙O過(guò)B、D兩點(diǎn),且分別交AB、BC于點(diǎn)E、F.
(1)求證:AC是⊙O的切線;
(2)已知AB=10,BC=6,求⊙O的半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A,C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線y=﹣x+3交AB,BC于點(diǎn)M,N,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)M,N.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在x軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
方程(m﹣2)x2﹣x+=0有兩個(gè)實(shí)數(shù)根,則m的取值范圍( 。
| A. | m> | B. | m≤且m≠2 | C. | m≥3 | D. | m≤3且m≠2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
對(duì)于任意實(shí)數(shù)m、n,定義一種運(yùn)運(yùn)算m※n=mn﹣m﹣n+3,等式的右邊是通常的加減和乘法運(yùn)算,例如:3※5=3×5﹣3﹣5+3=10.請(qǐng)根據(jù)上述定義解決問(wèn)題:若a<2※x<7,且解集中有兩個(gè)整數(shù)解,則a的取值范圍是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,∠AOC的平分線交AB于點(diǎn)D,E為BC的中點(diǎn),已知A(0,4)、C(5,0),二次函數(shù)y=x2+bx+c的圖象拋物線經(jīng)過(guò)A,C兩點(diǎn).
(1)求該二次函數(shù)的表達(dá)式;
(2)F、G分別為x軸,y軸上的動(dòng)點(diǎn),順次連接D、E、F、G構(gòu)成四邊形DEFG,求四邊形DEFG周長(zhǎng)的最小值;
(3)拋物線上是否在點(diǎn)P,使△ODP的面積為12?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,AB是⊙O的直徑,點(diǎn)D是上一點(diǎn),且∠BDE=∠CBE,BD與AE交于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若BD平分∠ABE,求證:DE2=DF•DB;
(3)在(2)的條件下,延長(zhǎng)ED,BA交于點(diǎn)P,若PA=AO,DE=2,求PD的長(zhǎng)和⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com