如圖,CD是⊙O的直徑,弦AB⊥CD于點H,若∠D=30°,CH=1cm,則AB=     cm.
【答案】分析:連接AC、BC.利用圓周角定理知∠D=∠B,然后根據(jù)已知條件“CD是⊙O的直徑,弦AB⊥CD于點H”,利用垂徑定理知BH=AB;最后再由直角三角形CHB的正切函數(shù)求得BH的長度,從而求得AB的長度.
解答:解:連接AC、BC.
∵∠D=∠B(同弧所對的圓周角相等),∠D=30°,
∴∠B=30°;
又∵CD是⊙O的直徑,弦AB⊥CD于點H,
∴BH=AB;
在Rt△CHB中,∠B=30°,CH=1cm,
∴BH=,即BH=;
∴AB=2cm.
故答案是:2
點評:本題考查了垂徑定理和直角三角形的性質(zhì),解此類題目要注意將圓的問題轉化成三角形的問題再進行計算.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

15、如圖所示,工人師傅做鋁合金窗框分下面三個步驟進行:
(1)先截出兩對符合規(guī)格的鋁合金窗料(如圖①所示),使AB=CD,EF=GH.
(2)擺放成如圖②的四邊形,則這時窗框的形狀是
平行四邊形
,根據(jù)的數(shù)學道理是
兩組對邊分別相等的四邊形是平行四邊形

(3)將直尺緊靠窗框的一個角(如圖③),調(diào)整窗框的邊框,當直角尺的兩條直角邊與窗框無縫隙時(如圖④,說明窗框合格,這時窗框是
矩形
,根據(jù)的數(shù)學道理是
有一個角是直角的平行四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、工人師傅做鋁合金窗框分下面三個步驟進行:
(1)先截出兩對符合規(guī)格的鋁合金窗料(如圖①),使AB=CD,EF=GH;
(2)擺放成如圖②的四邊形,則這時窗框的形狀是
平行四邊形
形,根據(jù)數(shù)學道理是:
兩組對邊分別相等的四邊形是平行四邊形
;
(3)將直角尺靠緊窗框的一個角(如圖③),調(diào)整窗框的邊框,當直角尺的兩條直角邊與窗框無縫隙時(如圖④),說明窗框合格,這時窗框是
矩形
形,根據(jù)的數(shù)學道理是:
有一個角是直角的平行四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•撫順)在與水平面夾角是30°的斜坡的頂部,有一座豎直的古塔,如圖是平面圖,斜坡的頂部CD是水平的,在陽光的照射下,古塔AB在斜坡上的影長DE為18米,斜坡頂部的影長DB為6米,光線AE與斜坡的夾角為30°,求古塔的高(
2
≈1.4,
3
≈1.7
).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,某水庫堤壩的橫斷面為梯形,背水坡AD的坡比(坡比是斜坡的鉛直距離與水平距離的比)為1:1.5,迎水坡BC的坡比為1:
3
,壩頂寬CD為3m,壩高CF為10m,則壩底寬AB約為( 。
3
≈1.732,保留3個有效數(shù)字)

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇武進區(qū)九年級上第一次月考數(shù)學試卷(帶解析) 題型:填空題

工人師傅做鋁合金窗框分下面三個步驟進行:
(1)先截出兩對符合規(guī)格的鋁合金窗料(如圖①),使AB=CD,EF=GH;
(2)擺放成如圖②的四邊形,則這時窗框的形狀是______形,根據(jù)的數(shù)學原理是:_______________________;
(3)將直角尺靠緊窗框的一個角(如圖③),調(diào)整窗框的邊框,當直角尺的兩條直角邊與窗框無縫隙時(如圖④),說明窗框合格,這時窗框是_______形,根據(jù)的數(shù)學原理是:_____________________.

查看答案和解析>>

同步練習冊答案