【題目】濟(jì)南國(guó)際滑雪自建成以來(lái),吸引大批滑雪愛(ài)好者,一滑雪者從山坡滑下,測(cè)得滑行距離y(單位:m)與滑行時(shí)間x(單位:s)之間的關(guān)系可以近似的用二次函數(shù)來(lái)表示.
滑行時(shí)間x/s | 0 | 1 | 2 | 3 | … |
滑行距離y/m | 0 | 4 | 12 | 24 | … |
(1)根據(jù)表中數(shù)據(jù)求出二次函數(shù)的表達(dá)式.現(xiàn)測(cè)量出滑雪者的出發(fā)點(diǎn)與終點(diǎn)的距離大約840m,他需要多少時(shí)間才能到達(dá)終點(diǎn)?
(2)將得到的二次函數(shù)圖象補(bǔ)充完整后,向左平移2個(gè)單位,再向下平移5個(gè)單位,求平移后的函數(shù)表達(dá)式.
【答案】(1)20s;(2)
【解析】
(1)利用待定系數(shù)法求出函數(shù)解析式,再求出y=840時(shí)x的值即可得;
(2)根據(jù)“上加下減,左加右減”的原則進(jìn)行解答即可.
解:(1)∵該拋物線(xiàn)過(guò)點(diǎn)(0,0),
∴設(shè)拋物線(xiàn)解析式為y=ax2+bx,
將(1,4)、(2,12)代入,得:
,
解得:,
所以?huà)佄锞(xiàn)的解析式為y=2x2+2x,
當(dāng)y=840時(shí),2x2+2x=840,
解得:x=20(負(fù)值舍去),
即他需要20s才能到達(dá)終點(diǎn);
(2)∵y=2x2+2x=2(x+)2﹣,
∴向左平移2個(gè)單位,再向下平移5個(gè)單位后函數(shù)解析式為y=2(x+2+)2﹣﹣5=2(x+)2﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題發(fā)現(xiàn))如圖1,半圓O的直徑AB=10,點(diǎn)P是半圓O上的一個(gè)動(dòng)點(diǎn),則△PAB的面積最大值是 ;
(問(wèn)題探究)如圖2所示,AB、AC、是某新區(qū)的三條規(guī)劃路,其中AB=6km,AC=3km,∠BAC=60°,所對(duì)的圓心角為60°.新區(qū)管委會(huì)想在路邊建物資總站點(diǎn)P,在AB、AC路邊分別建物資分站點(diǎn)E、F,即分別在、線(xiàn)段AB和AC上選取點(diǎn)P、E、F.由于總站工作人員每天要將物資在各物資站點(diǎn)間按P→E→F→P的路徑進(jìn)行運(yùn)輸,因此,要在各物資站點(diǎn)之間規(guī)劃道路PE、EF和FP.顯然,為了快捷環(huán)保和節(jié)約成本,就要使線(xiàn)段PE、EF、FP之和最短(各物資站點(diǎn)與所在道路之間的距離、路寬均忽略不計(jì)).可求得△PEF周長(zhǎng)的最小值為 km;
(拓展應(yīng)用)如圖3是某街心花園的一角,在扇形OAB中,∠AOB=90°,OA=12米,在圍墻OA和OB上分別有兩個(gè)入口C和D,且AC=4米,D是OB的中點(diǎn),出口E在上.現(xiàn)準(zhǔn)備沿CE、DE從入口到出口鋪設(shè)兩條景觀小路,在四邊形CODE內(nèi)種花,在剩余區(qū)域種草.
①出口E設(shè)在距直線(xiàn)OB多遠(yuǎn)處可以使四邊形CODE的面積最大?最大面積是多少?(小路寬度不計(jì))
②已知鋪設(shè)小路CE所用的普通石材每米的造價(jià)是200元,鋪設(shè)小路DE所用的景觀石材每米的造價(jià)是400元.
請(qǐng)問(wèn):在上是否存在點(diǎn)E,使鋪設(shè)小路CE和DE的總造價(jià)最低?若存在,求出最低總造價(jià)和出口E距直線(xiàn)OB的距離;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】永農(nóng)化工廠(chǎng)以每噸800元的價(jià)格購(gòu)進(jìn)一批化工原料,加工成化工產(chǎn)品進(jìn)行銷(xiāo)售,已知每1噸化工原料可以加工成化工產(chǎn)品0.8噸,該廠(chǎng)預(yù)計(jì)銷(xiāo)售化工產(chǎn)品不超過(guò)50噸時(shí)每噸售價(jià)為1600元,超過(guò)50噸時(shí),每超過(guò)1噸產(chǎn)品,銷(xiāo)售所有的化工產(chǎn)品每噸價(jià)格均會(huì)降低4元,設(shè)該化工廠(chǎng)生產(chǎn)并銷(xiāo)售了x噸化工產(chǎn)品.
(1)用x的代數(shù)式表示該廠(chǎng)購(gòu)進(jìn)化工原料 噸;
(2)當(dāng)x>50時(shí),設(shè)該廠(chǎng)銷(xiāo)售完化工產(chǎn)品的總利潤(rùn)為y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)如果要求總利潤(rùn)不低于38400元,那么該廠(chǎng)購(gòu)進(jìn)化工原料的噸數(shù)應(yīng)該控制在什么范圍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 Rt△ABC 中BC=2,以 BC 的中點(diǎn) O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點(diǎn),的長(zhǎng)為( )
A.B.C.πD.2π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過(guò)D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線(xiàn);
(2)連接OE,若BC=4,求△OEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解今年初三學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,某校對(duì)上學(xué)期的數(shù)學(xué)成績(jī)作了統(tǒng)計(jì)分析,繪制得到如下圖表.請(qǐng)結(jié)合圖表所給出的信息解答下列問(wèn)題:
成績(jī) | 頻數(shù) | 頻率 |
優(yōu)秀 | 45 | b |
良好 | a | 0.3 |
合格 | 105 | 0.35 |
不合格 | 60 | c |
(1)該校初三學(xué)生共有多少人?
(2)求表中a,b,c的值,并補(bǔ)全條形統(tǒng)計(jì)圖.
(3)初三(一)班數(shù)學(xué)老師準(zhǔn)備從成績(jī)優(yōu)秀的甲、乙、丙、丁四名同學(xué)中任意抽取兩名同學(xué)做學(xué)習(xí)經(jīng)驗(yàn)介紹,求恰好選中甲、乙兩位同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c,關(guān)于x的方程a(1﹣x2)+2bx+c(1+x2)=0有兩個(gè)相等實(shí)根,且3c=a+3b
(1)試判斷△ABC的形狀;
(2)求sinA+sinB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店銷(xiāo)售一種商品,每件成本8元,規(guī)定每件商品售價(jià)不低于成本,且不高于20元,經(jīng)市場(chǎng)調(diào)查每天的銷(xiāo)售量y(件)與每件售價(jià)x(元)滿(mǎn)足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元件) | 10 | 11 | 12 | 13 | 14 | x |
銷(xiāo)售量y(件) | 100 | 90 | 80 | 70 |
|
|
(1)將上面的表格填充完整;
(2)設(shè)該商品每天的總利潤(rùn)為w元,求w與x之間的函數(shù)表達(dá)式;
(3)計(jì)算(2)中售價(jià)為多少元時(shí),獲得最大利潤(rùn),最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com