已知:如圖,AB、AC、ED分別切⊙O于點(diǎn)B、C、D,且AC⊥DE于E,BC的延長(zhǎng)線交直線精英家教網(wǎng)DE于點(diǎn)F.若BC=24,sin∠F=
35

(1)求EF的長(zhǎng);
(2)試判斷直線AB與CD是否平行?若平行,給出證明;若不平行,說(shuō)明理由.
分析:(1)由sin∠F=
3
5
,設(shè)CE=3x,CF=5x,利用勾股定理可求EF,進(jìn)而可求ED,再利用切割線定理可解出x,從而求出EF;(2)AB與CD不平行,連接BD,利用弦切角定理可知∠CDF=∠DBF,再加上一組公共角,那么易證△BDF∽△DCF,利用(1)中求出的x,可求出CF、DF、DC、BD的長(zhǎng),從而可以得出BD≠BC,即∠
BDC≠∠BCD,再結(jié)合弦切角定理可知∠ABC=∠BDC,從而得出∠ABC≠∠BCD,那么AB不平行于CD.
解答:精英家教網(wǎng)解:(1)在Rt△CEF中,∠CEF=90°,
由sin∠F=
3
5
,設(shè)CE=3x,CF=5x,
由勾股定理得EF=4x,
∵ED、EC分別切⊙O于點(diǎn)D、C,
∴ED=EC=3x,
由切割線定理得FD2=FC•FB,即(7x)2=5x•(5x+24),
∴x2-5x=0,
∴x1=5,x2=0(不合題意,舍去),
∴EF=4x=20;(4分)

(2)AB與CD不平行,(5分)
連接BD,
∵ED切⊙O于點(diǎn)D,
∴∠CBD=∠CDF,
又∵∠F=∠F,
∴△BDF∽△DCF,
BD
DC
=
DF
CF
,
∵CF=5x=25,DF=7x=35,
在等腰直角△CDE中,可求得DC=15
2
,
∴BD=21
2
,(7分)BC=24,
∴BD≠BC,
∴∠BDC≠∠BCD,
又∵AB切⊙O于點(diǎn)B,
∴∠ABC=∠BDC,
∴∠ABC≠∠BCD,
∴AB與CD不平行.(8分)
點(diǎn)評(píng):本題利用了三角函數(shù)值、勾股定理、切割線定理、弦切角定理、相似三角形的判定和性質(zhì)等知識(shí).
(要證兩直線不平行,即可證它們所夾的內(nèi)錯(cuò)角不相等).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、已知:如圖,AB、AC分別切⊙O于B、C,D是⊙O上一點(diǎn),∠D=40°,則∠A的度數(shù)等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AB,CD相交于點(diǎn)O,且OA•OD=OB•OC,求證:AC∥DB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AB是⊙O的直徑,AC是弦,直線EF是過(guò)點(diǎn)C的⊙O的切線,AD⊥EF于點(diǎn)D.
(1)求證:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求
AC
的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

29、已知,如圖,AB∥CD,∠EAB+∠FDC=180°.求證:AE∥FD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AB=AC,DB=DC,求證:∠B=∠C.

查看答案和解析>>

同步練習(xí)冊(cè)答案