在如圖所示的平面直角坐標(biāo)系中,直線AB:y=k1x+b1與直線AD:y=k2x+b2相交于點(diǎn)A(1,3),且點(diǎn)B坐標(biāo)為(0,2),直線AB交x軸負(fù)半軸于點(diǎn)C,直線AD交x軸正半軸于點(diǎn)D.
(1)求直線AB的函數(shù)解析式;
(2)根據(jù)圖象直接回答,不等式k1x+b1<k2x+b2的解集;
(3)若△ACD的面積為9,求直線AD的函數(shù)解析式;
(4)若點(diǎn)M為x軸一動(dòng)點(diǎn),當(dāng)點(diǎn)M在什么位置時(shí),使AM+BM的值最?求出此時(shí)點(diǎn)M的坐標(biāo).
分析:(1)利用A,B兩點(diǎn)坐標(biāo),由待定系數(shù)法求一次函數(shù)解析式即可得出答案;
(2)利用A點(diǎn)橫坐標(biāo)得出不等式k1x+b1<k2x+b2的解集即可;
(3)利用△ACD的面積為9,得出D點(diǎn)坐標(biāo),再利用A,D坐標(biāo)求出解析式即可;
(4)首先作點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)E(0,-2),連接AE交x軸于點(diǎn)M,利用E點(diǎn)坐標(biāo)求出直線AE解析式進(jìn)而得出點(diǎn)M的坐標(biāo).
解答:解:(1)把A、B兩點(diǎn)代入,
3=k+b
b=2
,
解得:
k=1
b=2
,
故直線AB的函數(shù)解析式為y=x+2;

(2)由圖象可得不等式的結(jié)集是:x<1;

(3)因?yàn)?span id="yvtt6op" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">S△ACD=
1
2
•CD•3=9,
得CD=6,所以D點(diǎn)坐標(biāo)(4,0),有
3=k+b
0=4k+b
,
解得
b=4
k=-1

故直線AD的函數(shù)解析式為y=-x+4;

(4)作點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)E(0,-2),連接AE交x軸于點(diǎn)M,
設(shè)直線AE解析式為y=k3x+b3,
3=k+b
b=-2
,
解得:
k=5
b=-2

即y=5x-2,當(dāng)y=0時(shí),x=
2
5
,
故點(diǎn)M的坐標(biāo)為(
2
5
,0)
點(diǎn)評(píng):此題主要考查了待定系數(shù)法求一次函數(shù)解析式以及利用軸對(duì)稱求線段最小值問題和利用圖象得不等式解集等知識(shí),利用數(shù)形結(jié)合得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、格點(diǎn)△ABC在如圖所示的平面直角坐標(biāo)系中,點(diǎn)B的坐標(biāo)為(1,1).
(1)畫出△ABC向左平移3的單位長(zhǎng)度的圖形△A1B1C1,再以原點(diǎn)O為位似中心,將△A1B1C1放大到兩倍(即新圖與原圖的相似比為2),在所給的方格圖中畫出所得的圖形△A2B2C2
(2)點(diǎn)A1的坐標(biāo)為
(-1,3)
,在△A1B1C1內(nèi)有一點(diǎn)M(a,b),則點(diǎn)M在△A2B2C2中的對(duì)應(yīng)點(diǎn)N的坐標(biāo)為
(2a,2b)或(-2a,-2b)
.(橫縱坐標(biāo)可用含a、b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、(1)在如圖所示的平面直角坐標(biāo)系中,先畫出△OAB關(guān)于y軸對(duì)稱的圖形,再畫出△OAB繞點(diǎn)O旋轉(zhuǎn)180°后得到的圖形.
(2)先閱讀后作答:我們已經(jīng)知道,根據(jù)幾何圖形的面積關(guān)系可以說明完全平方公式,實(shí)際上還有一些等式也可以用這種方式加以說明,例如:
(2a+b)(a+b)=2a2+3ab+b2,就可以用圖1的面積關(guān)系來說明.
①根據(jù)圖2寫出一個(gè)等式
(a+2b)(2a+b)=2a2+5ab+2b2
;
②已知等式:(x+p)(x+q)=x2+(p+q)x+pq,請(qǐng)你畫出一個(gè)相應(yīng)的幾何圖形加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、在如圖所示的平面直角坐標(biāo)系中,描出點(diǎn)A(-2,1),B(3,1),C(-2,-2),D(3,-2)四個(gè)點(diǎn).
(1)線段AB、CD有什么關(guān)系?并說明理由;
(2)順次連接A、B、C、D四點(diǎn)組成的圖形,你認(rèn)為它像什么?請(qǐng)寫出一個(gè)具體名稱?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、△ABC在如圖所示的平面直角坐標(biāo)系中.
(1)畫出△ABC關(guān)于原點(diǎn)對(duì)稱的△A1B1C1
(2)畫出△A1B1C1關(guān)于y軸對(duì)稱的△A2B2C2
(3)請(qǐng)直接寫出△AB2A1的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

Rt△ABC在如圖所示的平面直角坐標(biāo)系中.
(1)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1
(2)畫出將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到的△A2B2C2
(3)寫出點(diǎn)B1、A2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案