【題目】如圖,已知AB是⊙O的直徑,點H在⊙O上,E是 的中點,過點E作EC⊥AH,交AH的延長線于點C.連接AE,過點E作EF⊥AB于點F.

(1)求證:CE是⊙O的切線;
(2)若FB=2,tan∠CAE= ,求OF的長.

【答案】
(1)

證明:連接OE,

∵點E為弧HB的中點,

∴∠1=∠2,

∵OE=OA,

∴∠3=∠2,

∴∠3=∠1,

∴OE∥AC,

∵AC⊥CE,

∴OE⊥CE,

∵點E在⊙O上,

∴CE是⊙O的切線


(2)

解:連接EB,

∵AB是⊙O的直徑,

∴∠AEB=90°,

∵EF⊥AB于點F,

∴∠AFE=∠EFB=90°,

∴∠2+∠AEF=∠4+∠AEF=90°,

∴∠2=∠4=∠1.

∵tan∠CAE= ,

∴tan∠4=

在Rt△EFB中,∠EFB=90°,F(xiàn)B=2,tan∠4= ,

∴EF= ,

在Rt△AEF中,tan∠2= ,EF=2

∴AF=4,

∴AB=AF+EF=6,

∴OB=3,

∴OF=OB﹣BF=1.


【解析】(1)連接OE,由于點E為弧HB的中點,根據(jù)圓周角定理可知∠1=∠2,而OA=OE,那么∠3=∠2,于是∠1=∠3,根據(jù)平行線的判定可知OE∥AC,而AC⊥CE,根據(jù)平行線的性質易知∠OEC=90°,即OE⊥CE,根據(jù)切線的判定可知CE是⊙O的切線;(2)由于AB是直徑,那么∠AEB=90°,而EF⊥AB,易知∠1=∠2=∠4,那么tan∠1=tan∠2=tan∠4= ,在Rt△EFB中,利用正切可求EF,同理在Rt△AEF中,也可求AF,那么直徑AB=6,從而可知半徑OB=3,進而可求OF.
【考點精析】認真審題,首先需要了解平行線的判定與性質(由角的相等或互補(數(shù)量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數(shù)量關系)的結論是平行線的性質),還要掌握勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:在RtABC中∠C=90°,CDAB邊上的高. 求證:Rt△ADCRtCDB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程或方程組解應用題:
為祝賀北京成功獲得2022年冬奧會主辦權,某工藝品廠準備生產(chǎn)紀念北京申辦冬奧會成功的“紀念章”和“冬奧印”.生產(chǎn)一枚“紀念章”需要用甲種原料4盒,乙種原料3盒;生產(chǎn)一枚“冬奧印”需要用甲種原料5 盒,乙種原料10 盒.該廠購進甲、乙兩種原料分別為20000盒和30000盒,如果將所購進原料正好全部都用完,那么能生產(chǎn)“紀念章”和“冬奧印”各多少枚?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,一次函數(shù) 與反比例函數(shù) 的圖象在第一象限的交點為A(1,n).

(1)求m與n的值;
(2)設一次函數(shù)的圖象與x軸交于點B,連結OA,求∠BAO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算: ﹣( ﹣1)0+( 2﹣4sin45°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應,那么就說y是x的函數(shù),記作y=f(x).在函數(shù)y=f(x)中,當自變量x=a時,相應的函數(shù)值y可以表示為f(a).
例如:函數(shù)f(x)=x2﹣2x﹣3,當x=4時,f(4)=42﹣2×4﹣3=5在平面直角坐標系xOy中,對于函數(shù)的零點給出如下定義:
如果函數(shù)y=f(x)在a≤x≤b的范圍內對應的圖象是一條連續(xù)不斷的曲線,并且f(a).f(b)<0,那么函數(shù)y=f(x)在a≤x≤b的范圍內有零點,即存在c(a≤c≤b),使f(c)=0,則c叫做這個函數(shù)的零點,c也是方程f(x)=0在a≤x≤b范圍內的根.
例如:二次函數(shù)f(x)=x2﹣2x﹣3的圖象如圖1所示.

觀察可知:f(﹣2)>0,f(1)<0,則f(﹣2).f(1)<0.所以函數(shù)f(x)=x2﹣2x﹣3在﹣2≤x≤1范圍內有零點.由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零點,﹣1也是方程x2﹣2x﹣3=0的根.
(1)觀察函數(shù)y1=f(x)的圖象2,回答下列問題:
①f(a)f(b) 0(“<”“>”或“=”)
②在a≤x≤b范圍內y1=f(x)的零點的個數(shù)是
(2)已知函數(shù)y2=f(x)=﹣ 的零點為x1 , x2 , 且x1<1<x2
①求零點為x1 , x2(用a表示);
②在平面直角坐標xOy中,在x軸上A,B兩點表示的數(shù)是零點x1 , x2 , 點 P為線段AB上的一個動點(P點與A、B兩點不重合),在x軸上方作等邊△APM和等邊△BPN,記線段MN的中點為Q,若a是整數(shù),求拋物線y2的表達式并直接寫出線段PQ長的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若平面直角坐標系中的點作如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負,平移|a|個單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負,平移|b|個單位),則把有序數(shù)對{a,b}叫做這一平移的“平移量”.規(guī)定“平移量”{a,b}與“平移量”{c,d}的加法運算法則為{a,b}+{c,d}={a+c,b+d}.

(1)若動點P從坐標點M(1,1)出發(fā),按照“平移量”{2,0}平移到N,再按照“平移量”{1,2}平移到G,形成△MNG,則點N的坐標為 , 點G的坐標為
(2)若動點P從坐標原點出發(fā),先按照“平移量”m平移到B,再按照“平移量”n平移到C;最后按照“平移量”q平移回到點O.當△OBC∽△MNG(在(1)中的三角形).且相似比為2:1時,請你直接寫出“平移量”m , n , q
(3)在(1)、(2)的前提下,請你在平面直角坐標系中畫出△OBC與△MNG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某拋物線的對稱軸為直線x=2,點E是該拋物線頂點,拋物線與y軸交于點C,過點C作CD∥x軸,與拋物線交于點B,與對稱軸交于點D,點A是對稱軸上一點,連結AC、AB,若△ABC是等邊三角形,則圖中陰影部分圖形的面積之和是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文化,源遠流長,在文學方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”,某中學為了了解學生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題做法全校學生中進行了抽樣調查,根據(jù)調查結果繪制城如圖所示的兩個不完整的統(tǒng)計圖,請結合圖中信息解決下列問題:

(1)本次調查所得數(shù)據(jù)的眾數(shù)是部,中位數(shù)是部,扇形統(tǒng)計圖中“1部”所在扇形的圓心角為度.
(2)請將條形統(tǒng)計圖補充完整;
(3)沒有讀過四大古典名著的兩名學生準備從四大固定名著中各自隨機選擇一部來閱讀,則他們選中同一名著的概率為

查看答案和解析>>

同步練習冊答案