【題目】如圖,在中,,,.點從點出發(fā),以每秒2個單位長度的速度沿邊向點運動.過點作交折線于點,以為邊在右側(cè)做正方形.設(shè)正方形與重疊部分圖形的面積為,點的運動時間為秒().
(1)當(dāng)點在邊上時,正方形的邊長為______(用含的代數(shù)式表示).
(2)當(dāng)點落在邊上時,求的值.
(3)當(dāng)點在邊上時,求與之間的函數(shù)關(guān)系式.
(4)作射線交邊于點,連結(jié).當(dāng)時,直接寫出的值.
【答案】(1)2t;(2);(3)S=;(4) :或.
【解析】
(1)由等腰三角形的性質(zhì)與正方形的性質(zhì)可得:∠A=∠ADP=45°,即AP=DP=2t;
(2)由等腰直角三角形的性質(zhì)與正方形的性質(zhì)可得:AB=AP+PF+FB,即,可求出t的值;(3)分兩種情況討論,根據(jù)重疊部分的圖像的形狀,可求出S與t之間的函數(shù)關(guān)系式;(4)分點E在△ABC的內(nèi)部和△ABC的外部兩種情況討論,根據(jù)平行線分線段成比例,可求t的值.
(1)∵,,
∴,且,
∴,
∴,
故答案為.
(2)如圖,
∵四邊形是正方形,
∴,.
∵,
∴.
∴.
∵,
∴,
∴.
(3)當(dāng)時,正方形與重疊部分圖形的面積為正方形的面積,
即,
當(dāng)時,如圖,正方形與重疊部分圖形的面積為五邊形的面積,
∵,
∴,
∵,
∴,
∴,
∴.
(4)如圖,當(dāng)點在內(nèi)部,設(shè)與交于點,
∵四邊形是正方形,
∴,,
∴,
∴,
∴.
∵,
∴設(shè),則,,
∴,
∴,
∴.
∴.
如圖,當(dāng)點在外部,設(shè)與交于點,
∵四邊形是正方形,
∴,,
∴,
∴,
∴.
∵,
∴設(shè),則,,
∴,
∵,
∴,
∴.
綜上所述:或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù)y= +(1-2a)x(a>0),下列說法錯誤的是( 。
A. 當(dāng)時,該二次函數(shù)圖象的對稱軸為y軸
B. 當(dāng)a>時,該二次函數(shù)圖象的對稱軸在y軸的右側(cè)
C. 該二次函數(shù)的圖象的對稱軸可為x=1
D. 當(dāng)x>2時,y的值隨x的值增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,B兩地相距120千米,甲、乙兩人沿同一條公路從A地出發(fā)到B地,乙騎自行車,甲騎摩托車,圖中DE,OC分別表示甲、乙離開A地的路程s(單位:千米)與時間t(單位:小時)的函數(shù)關(guān)系的圖象,設(shè)在這個過程中,甲、乙兩人相距y(單位:千米),則y關(guān)于t的函數(shù)圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點,且頂點在BC邊上,對稱軸交BE于點F,點D,E的坐標(biāo)分別為(3,0),(0,1).
(1)求拋物線的解析式;
(2)猜想△EDB的形狀并加以證明;
(3)點M在對稱軸右側(cè)的拋物線上,點N在x軸上,請問是否存在以點A,F(xiàn),M,N為頂點的四邊形是平行四邊形?若存在,請求出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:記為,它與軸交于兩點,;將繞旋轉(zhuǎn)得到,交軸于;將繞旋轉(zhuǎn)得到,交軸于;…如此進行下去,直至得到,若點在第6段拋物線上,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(m,6),B(n,1)在反比例函數(shù)的圖象上,AD⊥x軸于點D,BC⊥x軸于點C,點E在CD上,CD=5,△ABE的面積為10,則點E的坐標(biāo)是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結(jié)果填寫在表格中:
銷售單價(元) | x |
銷售量y(件) |
|
銷售玩具獲得利潤w(元) |
|
(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元.
(3)在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD,AB=AC,點E,F分別是BC,AD的中點,連接AE,CF.
(1)求證:四邊形AECF是矩形;
(2)若AB=8,求菱形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
工廠加工某種新型材料,首先要將材料進行加溫處理,使這種材料保持在一定的溫度范圍內(nèi)方可進行繼續(xù)加工處理這種材料時,材料溫度是時間的函數(shù)下面是小明同學(xué)研究該函數(shù)的過程,把它補充完整:
在這個函數(shù)關(guān)系中,自變量x的取值范圍是______.
如表記錄了17min內(nèi)10個時間點材料溫度y隨時間x變化的情況:
時間 | 0 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | |
溫度 | 15 | 24 | 42 | 60 | m |
上表中m的值為______.
如圖,在平面直角坐標(biāo)系xOy中,已經(jīng)描出了上表中的部分點根據(jù)描出的點,畫出該函數(shù)的圖象.
根據(jù)列出的表格和所畫的函數(shù)圖象,可以得到,當(dāng)時,y與x之間的函數(shù)表達式為______,當(dāng)時,y與x之間的函數(shù)表達式為______.
根據(jù)工藝的要求,當(dāng)材料的溫度不低于時,方可以進行產(chǎn)品加工,在圖中所示的溫度變化過程中,可以進行加工的時間長度為______min.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com