【題目】(1)操作:如圖,在已知內(nèi)角度數(shù)的三個(gè)三角形中,請(qǐng)用直尺從某一頂點(diǎn)畫(huà)一條線段,把原三角形分割成兩個(gè)等腰三角形,并在圖中標(biāo)注相應(yīng)的角的度數(shù)
(2)拓展,△ABC中,AB=AC,∠A=45°,請(qǐng)把△ABC分割成三個(gè)等腰三角形,并在圖中標(biāo)注相應(yīng)的角的度數(shù).
(3)思考在如圖所示的三角形中∠A=30°.點(diǎn)P和點(diǎn)Q分別是邊AC和BC上的兩個(gè)動(dòng)點(diǎn).分別連接BP和PQ把△ABC分割成三個(gè)三角形.△ABP,△BPQ,△PQC若分割成的這三個(gè)三角形都是等腰三角形,求∠C的度數(shù)所有可能值直接寫(xiě)出答案即可.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)∠C所有可能的值為10°、20°、25°,35°、40°、50°、80°、100°.
【解析】
(1)在圖1、圖2、圖3中,分別作AB、AB、BC的垂直平分線,根據(jù)垂直平分線的性質(zhì)及外角的性質(zhì)求出各角度數(shù)即可;(2)分別作AB、BC的垂直平分線,交于點(diǎn)O,連接OA、OB、OC可得三角形OAB、OAC、OBC為等腰三角形,根據(jù)等腰三角形的性質(zhì)及外角性質(zhì)求出各角度數(shù)即可;(3)分PB=PA、AB=AP、BA=BP時(shí),PB=PQ、BP=BQ、QB=QP,PQ=QC、PC=QC、PQ=PC等10種情況,根據(jù)等腰三角形的性質(zhì)分別求出∠C的度數(shù)即可.
(1)在圖1、圖2、圖3中,分別作AB、AB、BC的垂直平分線,
如圖1,∵∠ABC=23°,∠BAC=90°,
∴∠C=90°-23°=67°,
∵MN垂直平分AB,
∴BD=AD,
∴△ABD是等腰三角形,
∴∠BAD=∠ABC=23°,
∴∠ADC=2∠ABC=46°,
∵∠BAC=90°,
∴∠DAC=∠BAC-∠BAD=67°,
∴∠DAC=∠C,
∴△DAC是等腰三角形,
同理:圖2中,∠ADC=46°,∠DAC=88°,∠C=46°,△ABD和△ACD是等腰三角形,
圖3中,∠BCD=23°,∠ADC=46°,∠ACD=46°,△BCD和△ACD是等腰三角形.
(2)作AB、BC的垂直平分線,交于點(diǎn)O,連接OA、OB、OC,
∵點(diǎn)O是三角形垂直平分線的交點(diǎn),
∴OA=OB=OC,
∴△OAB、△OAC、△OBC是等腰三角形,
∵AB=AC,∠BAC=45°,
∴∠ABC=∠ACB=67.5°,
∴AD是BC的垂直平分線,
∴∠BAD=∠CAD=22.5°,
∴∠OBA=∠OAB=22.5°,∠OCA=∠OAC=22.5°,
∴∠OBC=∠OCB=45°.
(3)①如圖,當(dāng)PB=PA,PB=PQ,PQ=CQ時(shí),
∵∠A=30°,PB=PQ,
∴∠ABP=∠A=30°,
∴∠APB=120°,
∵PB=PQ,PQ=CQ,
∴∠PQB=∠PBQ,∠C=∠CPQ,
∴∠PBQ=2∠C,
∴∠APB=∠PBQ+∠C=3∠C=120°,
解得:∠C=40°.
②如圖,當(dāng)PB=PA,PB=BQ,PQ=CQ時(shí),
∴∠PQB=2∠C,∠PQB=∠BPQ,
∴∠PBQ=180°-2∠PQB=180°-4∠C,
∴180°-4∠C+∠C=120°,
解得:∠C=20°,
③如圖,當(dāng)PA=PB,BQ=PQ,CQ=CP時(shí),
∵∠PQC=2∠PBQ,∠PQC=(180°-∠C),
∴∠PBQ=(180°-∠C),
∴(180°-∠C)+∠C=120°,
解得:∠C=100°.
④如圖,當(dāng)PA=PB,BQ=PQ,PQ=CP時(shí),
∵∠PQC=∠C=2∠PBQ,
又∵∠C+∠PBQ=120°,
∴∠C=80°;
⑤如圖,當(dāng)AB=AP,BP=BQ,PQ=QC時(shí),
∵∠A=30°,
∴∠APB=(180°-30°)=75°,
∵BP=BQ,PQ=CQ,
∴∠BPQ=∠BQP,∠QPC=∠QCP,
∴∠BQP=2∠C,
∴∠PBQ=180°-4∠C,
∴∠C+180°-4∠C=75°,
解得:∠C=35°.
⑥如圖,當(dāng)AB=AP,BQ=PQ,PC=QC時(shí),
∴∠PQC=2∠PBC,∠PQC=(180°-∠C),
∴∠PBC=(180°-∠C),
∴(180°-∠C)+∠C=75°,
解得:∠C=40°.
⑦如圖,當(dāng)AB=AP,BQ=PQ,PC=QP時(shí),
∵∠C=∠PQC=2∠PBC,∠C+∠PQC=75°,
∴∠C=50°;
⑧當(dāng)AB=AP,BP=PQ,PQ=CQ時(shí),
∵AB=BP,∠A=30°,
∴∠ABP=∠APB=75°,
又∵∠PBQ=∠PQB=2∠C,
且有∠PBQ+∠C=180°-30°-75°=75°,
∴3∠C=75°,
∴∠C=25°;
⑨當(dāng)AB=BP,BP=PQ,PQ=CQ時(shí),
∵AB=BP,
∴∠BPA=∠A=30°,
∵∠PBQ=∠PQB=2∠C,
∴2∠C+∠C=30°,
解得:∠C=10°.
⑩當(dāng)AB=BP,BQ=PQ,PQ=CQ時(shí),
∴∠PQC=∠C=2∠PBQ,
∴∠C+∠C=30°,
解得:∠C=20°.
綜上所述:∠C所有可能的值為10°、20°、25°,35°、40°、50°、80°、100°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有兩輛玩具車進(jìn)行30米的直跑道比賽,兩車從起點(diǎn)同時(shí)出發(fā),A車到達(dá)終點(diǎn)時(shí),B車離終點(diǎn)還差12米,A車的平均速度為2.5米/秒.
(1)求B車的平均速度;
(2)如果兩車重新比賽,A車從起點(diǎn)退后12米,兩車能否同時(shí)到達(dá)終點(diǎn)?請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若調(diào)整A車的平均速度,使兩車恰好同時(shí)到達(dá)終點(diǎn),求調(diào)整后A車的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形MNPQ中,動(dòng)點(diǎn)R從點(diǎn)N出發(fā),沿著N-P-Q-M方向移動(dòng)至M停止,設(shè)R移動(dòng)路程為x,MNR面積為y,那么y與x的關(guān)系如圖②,下列說(shuō)法不正確的是( )
A.當(dāng)x=2時(shí),y=5B.矩形MNPQ周長(zhǎng)是18
C.當(dāng)x=6時(shí),y=10D.當(dāng)y=8時(shí),x=10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】浠水縣商場(chǎng)某柜臺(tái)銷售每臺(tái)進(jìn)價(jià)分別為160元、120元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 4臺(tái) | 1200元 |
第二周 | 5臺(tái) | 6臺(tái) | 1900元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)
(1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);
(2)若商場(chǎng)準(zhǔn)備用不多于7500元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共50臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,商場(chǎng)銷售完這50臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)超過(guò)1850元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1) 請(qǐng)畫(huà)出△ABC向左平移5個(gè)單位長(zhǎng)度后得到的△ABC;
(2) 請(qǐng)畫(huà)出△ABC關(guān)于原點(diǎn)對(duì)稱的△ABC;
(3) 在軸上求作一點(diǎn)P,使△PAB的周長(zhǎng)最小,請(qǐng)畫(huà)出△PAB,并直接寫(xiě)出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)直線BF垂直于直線CE于點(diǎn)F,交CD于點(diǎn)G(如圖1),求證:AE=CG;
(2)直線AH垂直于直線CE,垂足為點(diǎn)H,交CD的延長(zhǎng)線于點(diǎn)M(如圖2),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,斜邊AB的垂直平分線交AB于點(diǎn)D,交BC于點(diǎn)E,AE平分∠BAC,那么下列不成立的是( )
A.∠B=∠CAEB.∠DEA=∠CEAC.∠B=∠BAED.AC=2EC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,∠C=90°,延長(zhǎng)CA至點(diǎn)D,使AD=AB.設(shè)F為線段AB上一點(diǎn),連接DF,以DF為斜邊作等腰Rt△DEF,且使AE⊥AB.
(1)求證:AE=AF+BC;
(2)當(dāng)點(diǎn)F為BA延長(zhǎng)線上一點(diǎn),而其余條件保持不變,如圖2所示,試探究AE、AF、BC之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com